Abstract

We investigate the interaction between optical parabolic pulses in a Raman fiber amplifier. Self-similar amplification of two identical time-delayed pulses creates an oscillation which further evolves into a train of dark solitons through the combined effects of non-linearity, normal dispersion and adiabatic Raman gain. Theoretical predictions are in good agreement with experimental results.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef] [PubMed]
  2. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, "Self Similar Propagation of parabolic pulses in normal-dispersion fiber amplifiers", J. Opt. Soc. Amer. B 19, 461 (2002).
    [CrossRef]
  3. C. Finot, G. Millot, and J. M. Dudley, "Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers," J. Opt. Soc. Amer. B 19, 461 (2002).
  4. J. P. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. J. Fuchs, E. B. Kley, H. Zellmer, and A. Tünnermann, "High-power femtosecond Yb-doped fiber amplifier," Opt. Express 10, 628 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-628.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-628.</a>
    [PubMed]
  5. A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson, and D. J. Richardson, "Ultrashort-pulse Yb3+ fiber based laser and amplifier system producing > 25 W average power," Opt. Lett. 29, 2073 (2004).
    [CrossRef] [PubMed]
  6. F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  7. C. Finot and G. Millot, "Synthesis of optical pulses by use of similaritons," Opt. Express 12, 5104 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5104.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5104.</a>
    [CrossRef] [PubMed]
  8. Y. Ozeki, Y. Takushima, K. Aiso, K. Taira, and K. Kikuchi, "Generation of 10 GHz similariton pulse trains from 1,2 km-long erbium-doped fibre amplifier for application to multi-wavelength pulse sources", Electron. Lett. 40, 1103 (2004).
    [CrossRef]
  9. C. Finot, S. Pitois, and G. Millot, "Regenerative 40-Gb/s wavelength converter based on similariton generation," Opt. Lett., in press (2005).
    [CrossRef] [PubMed]
  10. S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. H. B. Nijhof, "Self-similar parabolic optical solitary waves," Theor. Math. Phys. 133, 1647 (2002).
    [CrossRef]
  11. C. Finot, G. Millot, C. Billet, and J. M. Dudley, "Experimental generation of parabolic pulses via Raman amplification in optical fiber", Opt. Express 11, 1547 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1547.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1547.</a>
    [CrossRef] [PubMed]
  12. A. C. Peacock, V. I. Kruglov, B. C. Thomsen, J. D. Harvey, M. E. Fermann, G. Sucha, D. Harter, and J. M. Dudley, "Generation and interaction of parabolic pulses in high gain fiber amplifiers and oscillators," in Optical Fiber Communication Conference (OFC), (Optical Society of America, Anaheim, 2001), paper WP4, pp. 13.
  13. E. M. Dianov, P. V. Mamyshev, A. M. Prokorov, and S. V. Chernikov, "Generation of a train of fundamental solitons at a high repetition rate in optical fibers," Opt. Lett. 14, 1008 (1989).
    [CrossRef] [PubMed]
  14. R. N. Thurston and A. M. Weiner, "Collisions of dark solitons in optical fibers," J. Opt. Soc. Amer. B 8, 471 (1991).
    [CrossRef]
  15. W. Zhao and E. Bourkoff, "Propagation properties of dark solitons," Opt. Lett. 14, 703 (1989).
    [CrossRef] [PubMed]
  16. C. Finot, "Influence of the pumping configuration on the generation of optical similaritons in optical fibers", Opt. Comm. 249, 553-561 (2005).
    [CrossRef]
  17. R. Trebino, Frequency-Resolved Optical Gating. The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2000).

Electron. Lett. (1)

Y. Ozeki, Y. Takushima, K. Aiso, K. Taira, and K. Kikuchi, "Generation of 10 GHz similariton pulse trains from 1,2 km-long erbium-doped fibre amplifier for application to multi-wavelength pulse sources", Electron. Lett. 40, 1103 (2004).
[CrossRef]

J. Opt. Soc. Amer. B (3)

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, "Self Similar Propagation of parabolic pulses in normal-dispersion fiber amplifiers", J. Opt. Soc. Amer. B 19, 461 (2002).
[CrossRef]

C. Finot, G. Millot, and J. M. Dudley, "Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers," J. Opt. Soc. Amer. B 19, 461 (2002).

R. N. Thurston and A. M. Weiner, "Collisions of dark solitons in optical fibers," J. Opt. Soc. Amer. B 8, 471 (1991).
[CrossRef]

Opt. Comm. (1)

C. Finot, "Influence of the pumping configuration on the generation of optical similaritons in optical fibers", Opt. Comm. 249, 553-561 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Optical Fiber Communication Conference (1)

A. C. Peacock, V. I. Kruglov, B. C. Thomsen, J. D. Harvey, M. E. Fermann, G. Sucha, D. Harter, and J. M. Dudley, "Generation and interaction of parabolic pulses in high gain fiber amplifiers and oscillators," in Optical Fiber Communication Conference (OFC), (Optical Society of America, Anaheim, 2001), paper WP4, pp. 13.

Phys. Rev. Lett. (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

F. �?. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Theor. Math. Phys. (1)

S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. H. B. Nijhof, "Self-similar parabolic optical solitary waves," Theor. Math. Phys. 133, 1647 (2002).
[CrossRef]

Other (1)

R. Trebino, Frequency-Resolved Optical Gating. The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Numerical calculations of the intensity profiles of a single pulse (circles) and a pair of pulses (solid lines) at different distances of propagation.

Fig. 2.
Fig. 2.

Numerical calculations of the intensity profiles of a a pair of pulses. (a) Central part of the pulse overlap at z = 4.17 km: simulations (solid line), linear superposition (circles) and sinusoidal fit (red dotted line). (b) Intensity and phase profiles at z = 5.3 km: numerical simulations (solid lines) and black soliton fit (circles).

Fig. 3.
Fig. 3.

Evolution of the normalized intensity profile of the dark soliton train from 5.3 to 7.3 km.

Fig. 4.
Fig. 4.

(a) Autocorrelations of the pair of pulses at z = 5.3 km: experimental results (circles) numerical calculations (solid line). (b) Output experimental spectra for a single pulse (dashed red curve) and a pair of pulses (solid line). (c) Corresponding theoretical spectrum for the pair of pulses..

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i E z = β 2 2 2 E t 2 γ E 2 E + i g 2 E ,

Metrics