Abstract

We propose and experimentally demonstrate the generation of cross-polarized photon pairs via four-wave mixing with cross-polarized frequency-conjugate laser pump pulses. This method can be used for various quantum information applications such as the preparation of Bell-states.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Kurtsiefer, P. Aarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, �??Quantum cryptography: A step towards global key distribution,�?? Nature 419, 450 (2002).
    [CrossRef] [PubMed]
  2. M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, �??Long-distance free-Space distribution of quantum entanglement,�?? Science 301, 621 (2003).
    [CrossRef] [PubMed]
  3. I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, �??Distribution of time-bin entangled qubits over 50 km of optical fiber,�?? Phys. Rev. Lett. 93, 180502 (2004).
    [CrossRef] [PubMed]
  4. D. C. Burnham, D. L. Weinberg, �??Observation of simultaneity in parametric production of optical photon pairs,�?? Phys. Rev. Lett. 25, 84 (1970).
    [CrossRef]
  5. S. Friberg, C. K. Hong, and L. Mandel, �??Measurement of time delays in the parametric production of photon pairs,�?? Phys. Rev. Lett. 54, 2011 (1985).
    [CrossRef] [PubMed]
  6. S. Friberg and L. Mandel, �??Production of squeezed states by combination of parametric down-conversion and harmonic generation,�?? Opt. Commun. 48, 439 (1984).
    [CrossRef]
  7. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, �??Ultrabright source of polarization-entangled photons,�?? Phys. Rev. A60, R773 (1999).
    [CrossRef]
  8. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, �??High-efficiency entangled photon pair collection in type-II parametric fluorescence,�?? Phys. Rev. A 64, 023802 (2001).
    [CrossRef]
  9. E. Brannen, F. R. Hunt, R. H. Adlington, R. W. Hicholls, �??Application of nuclear coincidence methods to atomic transitions in the wavelength range 2000-6000A,�?? Nature 175, 810 (1955).
    [CrossRef]
  10. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H.J. Kimble, �??Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,�?? Nature 423, 731 (2003).
    [CrossRef] [PubMed]
  11. C. Santori, D. Fattal, J. Vu, G. S. Solomon, Y. Yamamoto, �??Indistinguishable photons from a single-photon device,�?? Nature 419, 594 (2002).
    [CrossRef] [PubMed]
  12. S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, �??Highly efficient photon-pair source using periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26 (2001).
    [CrossRef]
  13. S. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, �??Efficient generation of tunable photon pairs at 0.8 and 1.6 ìm,�?? Opt. Lett. 27, 2115 (2002).
    [CrossRef]
  14. F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, �??Efficient spectrally bright source of polarizationentangled photons,�?? Phys. Rev. A 71, 033805 (2005).
    [CrossRef]
  15. T. A. Birks, J. C. Knight, and P. St. J. Russell, �??Endlessly single-mode photonic crystal fibers,�?? Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  16. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communication,�?? IEEE Photonics Tech. Lett. 14, 983 (2002).
    [CrossRef]
  17. A. Dogariu, J. Fan, and L.J. Wang, �??Correlated photon generation for quantum cryptography,�?? NEC R&D Journal 44, 294 (2003).
  18. J. E. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, "Quantum-correlated twin photons from microstructure fiber," Opt. Express 12, 3086-3094 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3086</a>
    [CrossRef] [PubMed]
  19. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-534</a>
    [CrossRef] [PubMed]
  20. J. Fan, A. Dogariu, L. J. Wang, �??Generation of correlated photon pairs in a microstructure fiber,�?? Opt. Lett. 30, 1530 (2005).
    [CrossRef] [PubMed]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995).
  22. H. Takesue and K. Inoue, �??Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop,�?? Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  23. X. Li, P. Voss, J. E. Sharping, P. Kumar, �??Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,�?? Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  24. T. E. Kiess, Y. H. Shih, A. V. Sergienko, and C. O. Alley, �??Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion,�?? Phys. Rev. lett. 71, 3893 (1993).
    [CrossRef] [PubMed]
  25. L. J. Wang, C. K. Hong, and S. R. Friberg, �??Generation of correlated photons via four-wave mixing in optial fibers,�?? J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).
    [CrossRef]
  26. P. L. Voss and P. Kumar, �??Raman-effect induced noise limits on ÷(3) parametric amplifiers and wavelength converters,�?? J. Opt. B: Quantum and Semiclass. Opt. 6, 762 (2004).
    [CrossRef]

Electron. Lett.

S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, �??Highly efficient photon-pair source using periodically poled lithium niobate waveguide,�?? Electron. Lett. 37, 26 (2001).
[CrossRef]

IEEE Photonics Tech. Lett.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, �??All-fiber photon-pair source for quantum communication,�?? IEEE Photonics Tech. Lett. 14, 983 (2002).
[CrossRef]

J. Opt. B: Quantum and Semiclass.

L. J. Wang, C. K. Hong, and S. R. Friberg, �??Generation of correlated photons via four-wave mixing in optial fibers,�?? J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001).
[CrossRef]

J. Opt. B: Quantum and Semiclass. Opt.

P. L. Voss and P. Kumar, �??Raman-effect induced noise limits on ÷(3) parametric amplifiers and wavelength converters,�?? J. Opt. B: Quantum and Semiclass. Opt. 6, 762 (2004).
[CrossRef]

Nature

C. Kurtsiefer, P. Aarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, �??Quantum cryptography: A step towards global key distribution,�?? Nature 419, 450 (2002).
[CrossRef] [PubMed]

E. Brannen, F. R. Hunt, R. H. Adlington, R. W. Hicholls, �??Application of nuclear coincidence methods to atomic transitions in the wavelength range 2000-6000A,�?? Nature 175, 810 (1955).
[CrossRef]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H.J. Kimble, �??Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,�?? Nature 423, 731 (2003).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vu, G. S. Solomon, Y. Yamamoto, �??Indistinguishable photons from a single-photon device,�?? Nature 419, 594 (2002).
[CrossRef] [PubMed]

NEC R&D Journal

A. Dogariu, J. Fan, and L.J. Wang, �??Correlated photon generation for quantum cryptography,�?? NEC R&D Journal 44, 294 (2003).

Opt. Commun.

S. Friberg and L. Mandel, �??Production of squeezed states by combination of parametric down-conversion and harmonic generation,�?? Opt. Commun. 48, 439 (1984).
[CrossRef]

Opt. Express

Opt. Lett.

Phys.

X. Li, P. Voss, J. E. Sharping, P. Kumar, �??Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,�?? Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

Phys. Rev.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, �??Ultrabright source of polarization-entangled photons,�?? Phys. Rev. A60, R773 (1999).
[CrossRef]

Phys. Rev. A

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, �??High-efficiency entangled photon pair collection in type-II parametric fluorescence,�?? Phys. Rev. A 64, 023802 (2001).
[CrossRef]

H. Takesue and K. Inoue, �??Generation of polarization-entangled photon pairs and violation of Bell�??s inequality using spontaneous four-wave mixing in a fiber loop,�?? Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, �??Efficient spectrally bright source of polarizationentangled photons,�?? Phys. Rev. A 71, 033805 (2005).
[CrossRef]

Phys. Rev. lett.

T. E. Kiess, Y. H. Shih, A. V. Sergienko, and C. O. Alley, �??Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion,�?? Phys. Rev. lett. 71, 3893 (1993).
[CrossRef] [PubMed]

D. C. Burnham, D. L. Weinberg, �??Observation of simultaneity in parametric production of optical photon pairs,�?? Phys. Rev. Lett. 25, 84 (1970).
[CrossRef]

S. Friberg, C. K. Hong, and L. Mandel, �??Measurement of time delays in the parametric production of photon pairs,�?? Phys. Rev. Lett. 54, 2011 (1985).
[CrossRef] [PubMed]

Phys.Rev. Lett.

I. Marcikic, H. de Riedmatten,W. Tittel, H. Zbinden, M. Legre, and N. Gisin, �??Distribution of time-bin entangled qubits over 50 km of optical fiber,�?? Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Science

M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, �??Long-distance free-Space distribution of quantum entanglement,�?? Science 301, 621 (2003).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic experimental setup to test Bell’s inequality. FC: fiber coupler, MF: microstructure fiber (first one used for generation of cross-polarized photon pairs, second one for phase compensation), BS: non-polarizing beam splitter, FU: fiber union, IF: interference filter at middle frequency, D1 and D2: photon detectors.

Fig. 2.
Fig. 2.

Schematic experimental setup. PBS: polarizing beam splitter, SMF: single mode fiber, λ/2: half-wave plate. MF1 and MF2 are microstructure fibers.

Fig. 3.
Fig. 3.

(a) Three cases of two different schemes to generate correlated photons in MF2, with electric field components labeled. Stokes: dashed line, anti-Stokes: solid line. (b) C/A versus the relative delay. The filled and open dots are data sets from two separate measurements (2 minutes averaging time). The average power for the Stokes and anti-Stokes pulses is ~ 100 μW for the filled dots and ~ 50 μW for the open dots. (c) Normalized spectra for the conjugate laser pulses in Fig. 2(b). (d) Phase-matching measurement at the relative delay time -5 ps. The Stokes pump pulse is fixed at the wavelength of 836.3 nm, with its spectrum shown in Fig. 2(c). The anti-Stokes pump is tuned with respect to a central wavelength of 832.7 nm (corresponding to 0 in the wavelength mismatch). Pump condition: Stokes, ~ 100 μW, anti-Stokes, ~ 25 μW. The dots are experimental measurement (10 minutes averaging time). The line is a Gaussian fit.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E s ( t , z ) = E s x ( t , z ) x + E s y ( t , z ) y ,
E as ( t , z ) = E a s x ( t , z ) x + E a s y ( t , z ) y .

Metrics