Abstract

The possibility for up-scaling the energy of sub-ps THz pulses generated by tilted pulse front excitation is demonstrated. Using 150-fs-long 500 μJ optical pump pulses at 800 nm up to 240 nJ THz pulse energy has been achieved. For a 1.2 mm2 pump spot area, the energy conversion efficiency of pump energy to THz pulse energy had a maximum of 5 × 10-4 at 300 μJ pump pulse energy. The corresponding photon conversion efficiency amounts to 10 %. For comparison, the maximum attainable THz pulse energy was limited to 3.1 nJ if a line focusing excitation geometry was utilized. This limit was reached at 32 μJ pump energy. For the latter configuration the THz energy dropped for larger pump energies. The tilted pulse front excitation allows further up-scaling of the THz pulse energy by using a larger pump spot size and still stronger pump pulses.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. Luo, K. Reimann, M. Woerner, T. Elsaesser, �??Nonlinear terahertz spectroscopy of semiconductor nanostructures,�?? Appl. Phys. A 78, 435-440 (2004).
    [CrossRef]
  2. G. M. H. Knippels, X. Yan, A. M. MacLeod, W. A. Gillespie, M. Yasumoto, D. Oepts and A. F. G. van der Meer, �??Generation and complete electric-field characterization of intense ultrashort tunable far-infrared laser pulses,�?? Phys. Rev. Lett. 83, 1578-1581 (1999).
    [CrossRef]
  3. D. You, R. R. Jones, P. H. Bucksbaum and D. R. Dykaar, �??Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,�?? Opt. Lett. 18, 290-292 (1993).
    [CrossRef] [PubMed]
  4. E. Budiarto, J. Margolies, S. Jeong and J. Son and J. Bokor, �??High-intensity terahertz pulses at 1-kHz repetition rate,�?? IEEE J. Quantum Electron. 32, 1839-1846 (1996).
    [CrossRef]
  5. Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere and A. G. Davies, �??Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,�?? Appl. Phys. Lett. 83, 3117-3119 (2003).
    [CrossRef]
  6. A. Nahata, A. S. Weling, and T. F. Heinz, �??A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,�?? Appl. Phys. Lett. 69, 2321-2323 (1996).
    [CrossRef]
  7. B. B. Hu, X.-C. Zhang, D. H. Auston and P. R. Smith, �??Free-space radiation from electro-optic crystals,�?? Appl. Phys. Lett. 56, 506-508 (1990).
    [CrossRef]
  8. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris and A. Galvanauskas, �??Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,�?? Appl. Phys. Lett. 76, 2505-2507 (2000).
    [CrossRef]
  9. J. K. Wahlstrand and R. Merlin, �??Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,�?? Phys. Rev. B 68, 054301 (2003).
    [CrossRef]
  10. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal and J. Kuhl, �??Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,�?? Appl. Phys. B 78, 593-599 (2004).
    [CrossRef]
  11. J. Hebling, G. Almási, I. Z. Kozma and J. Kuhl, �??Velocity matching by pulse front tilting for large-area THz-pulse generation,�?? Opt. Express 10, 1161-1166 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1161">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1161</a>
    [PubMed]
  12. A. G. Stepanov, J. Hebling and J. Kuhl, �??Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,�?? Appl. Phys. Lett. 83, 3000-3002 (2003).
    [CrossRef]
  13. D. A. Kleinman and D. H. Auston, �??Theory of electrooptic shock radiation in nonlinear optical media,�?? IEEE J. Quantum Electron. 20, 964-970 (1984).
    [CrossRef]
  14. A. G. Stepanov, J. Hebling and J. Kuhl, �??THz generation via optical rectification with ultrashort laser pulse focused to a line,�?? Appl. Phys. B 81, 23-26 (2005).
    [CrossRef]
  15. K. Reimann, R. P. Smith, A. M. Weiner, T. Elsaesser and M. Woerner, �??Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimetre,�?? Opt. Lett. 28, 471-473 (2003).
    [CrossRef] [PubMed]
  16. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. van Stryland and M. Sheik-Bahae, �??Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,�?? IEEE J. Quantum Electron. 32, 1324-1333 (1996).
    [CrossRef]
  17. J. Hebling, A. G. Stepanov, G. Almási, J. Kuhl, �??Enhanced polariton decay in LiNbO3 due to stimulated emission of acoustic phonons,�?? Ultrafast Phenomena 2004.

Appl. Phys. A (1)

C. Luo, K. Reimann, M. Woerner, T. Elsaesser, �??Nonlinear terahertz spectroscopy of semiconductor nanostructures,�?? Appl. Phys. A 78, 435-440 (2004).
[CrossRef]

Appl. Phys. B (2)

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal and J. Kuhl, �??Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,�?? Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

A. G. Stepanov, J. Hebling and J. Kuhl, �??THz generation via optical rectification with ultrashort laser pulse focused to a line,�?? Appl. Phys. B 81, 23-26 (2005).
[CrossRef]

Appl. Phys. Lett. (5)

A. G. Stepanov, J. Hebling and J. Kuhl, �??Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,�?? Appl. Phys. Lett. 83, 3000-3002 (2003).
[CrossRef]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere and A. G. Davies, �??Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,�?? Appl. Phys. Lett. 83, 3117-3119 (2003).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, �??A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,�?? Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston and P. R. Smith, �??Free-space radiation from electro-optic crystals,�?? Appl. Phys. Lett. 56, 506-508 (1990).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris and A. Galvanauskas, �??Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,�?? Appl. Phys. Lett. 76, 2505-2507 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. A. Kleinman and D. H. Auston, �??Theory of electrooptic shock radiation in nonlinear optical media,�?? IEEE J. Quantum Electron. 20, 964-970 (1984).
[CrossRef]

E. Budiarto, J. Margolies, S. Jeong and J. Son and J. Bokor, �??High-intensity terahertz pulses at 1-kHz repetition rate,�?? IEEE J. Quantum Electron. 32, 1839-1846 (1996).
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. van Stryland and M. Sheik-Bahae, �??Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,�?? IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

J. K. Wahlstrand and R. Merlin, �??Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,�?? Phys. Rev. B 68, 054301 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

G. M. H. Knippels, X. Yan, A. M. MacLeod, W. A. Gillespie, M. Yasumoto, D. Oepts and A. F. G. van der Meer, �??Generation and complete electric-field characterization of intense ultrashort tunable far-infrared laser pulses,�?? Phys. Rev. Lett. 83, 1578-1581 (1999).
[CrossRef]

Other (1)

J. Hebling, A. G. Stepanov, G. Almási, J. Kuhl, �??Enhanced polariton decay in LiNbO3 due to stimulated emission of acoustic phonons,�?? Ultrafast Phenomena 2004.

Supplementary Material (1)

» Media 1: GIF (1259 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Measured energy of THz pulses generated by the tilted pulse front (red circles) and line focusing (open blue squares) set-ups versus the energy of the 780 nm pump laser pulses (upper left part). Energy conversion efficiency versus the pump energy for the tilted pulse front set-up (lower right part).

Fig. 2.
Fig. 2.

Measured energy of THz pulses generated by the tilted pulse front (red circles) and the line focusing (blue squares) set-ups versus pump intensity. The THz pulse energy values for the line focusing set-up are multiplied by 26.

Fig. 3.
Fig. 3.

(1.3 MB) Numerical simulation of THz pulses generated in LiNbO3. Top panel: the pump pulse is focused from the left to a line perpendicular to the plane of display. Bottom panel: tilted pulse front set-up with an input pulse extending from -80 to + 80 μm. Red and yellow denote a positive amplitude of the electric field, blue a negative one.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E THz = C V m τ S ,

Metrics