Abstract

Motion of the sample arm fiber in optical coherence tomography (OCT) systems can dynamically alter the polarization state of light incident on tissue during imaging, with consequences for both conventional and polarization-sensitive (PS-)OCT. Endoscopic OCT is particularly susceptible to polarization-related effects, since in most cases, the transverse scanning mechanism involves motion of the sample arm optical fiber to create an image. We investigated the effects of a scanning sample arm fiber on the polarization state of light in an OCT system, and demonstrate that by referencing the state backscattered from within a sample to the measured state at the surface, changes in polarization state due to sample fiber motion can be isolated. The technique is demonstrated by high-speed PS-OCT imaging at 1 frame per second, with both linear and rotary scanning fiber-optic probes. Measurements were made on a calibrated wave plate, and endoscopic PS-OCT images of ex-vivo human tissues are also presented, allowing comparison with features in histologic sections.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. E. Bouma, G. J. Tearney, �??Clinical imaging with optical coherence tomography,�?? Acad. Radiol. 9, 942-953 (2002).
    [CrossRef] [PubMed]
  2. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, A. V. Shakhov, N. M. Shakhova, L. B. Snopova, A. B. Terent�??eva, E. V. Zagainova, Y. P. Chumakov, I. A. Kuznetzova, �??Endoscopic applications of optical coherence tomography,�?? Opt. Express 3, 257-270 (1998).
    [CrossRef] [PubMed]
  3. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, �??Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,�?? Opt. Lett. 21, 543-545 (1996).
    [CrossRef] [PubMed]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, �??In vivo endoscopic optical biopsy with optical coherence tomography,�?? Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  5. B. E. Bouma, G. J. Tearney, �??Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,�?? Opt. Lett. 24, 531-533 (1999).
    [CrossRef]
  6. A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, Jr., J. A. Izatt, �??Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,�?? Opt. Lett. 24, 1358-1360 (1999).
    [CrossRef]
  7. P. R. Herz, Y. Chen, A. D. Aguirre, J. G. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, C. Petersen, �??Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,�?? Opt. Express 12, 3252-3542 (2004).
    [CrossRef]
  8. Y. Pan, H. Xie, G. K. Fedder, �??Endoscopic optical coherence tomography based on a microelectromechanical mirror," Opt. Lett. 26, 1966-1968 (2001).
    [CrossRef]
  9. P. H. Tran, D. S. Mukai, M. Brenner, Z. Chen, �??In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,�?? Opt. Lett. 29, 1236-1238 (2004).
    [CrossRef] [PubMed]
  10. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, C. Petersen, �??Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 29, 2261-2263 (2004).
    [CrossRef] [PubMed]
  11. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, �??Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,�?? Opt. Lett. 22, 934-936 (1997).
    [CrossRef] [PubMed]
  12. M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., L. B. Da Silva, �??Birefringence characterization of biological tissue by use of optical coherence tomography,�?? Opt. Lett. 23, 228-230 (1998).
    [CrossRef]
  13. J. F. de Boer, T. E. Milner, J. S. Nelson, �??Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,�?? Opt. Lett. 24, 300-302 (1999).
    [CrossRef]
  14. G. Yao, L. V. Wang, �??Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,�?? Opt. Lett. 24, 537-539 (1999).
    [CrossRef]
  15. C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, A. F. Fercher, �??Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,�?? Opt. Express 9, 780-790 (2001).
    [CrossRef] [PubMed]
  16. J. Moreau, V. Loriette, A-C. Boccara, �??Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. II. Instrument and results,�?? Appl. Opt. 42, 3811-3818 (2003).
    [CrossRef] [PubMed]
  17. N. J. Kemp, J. Park, H. N. Zaatari, H. G. Rylander, T. E. Milner, �??High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography,�?? J. Opt. Soc. Am. A 22, 552-560 (2005).
    [CrossRef]
  18. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, �??High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,�?? Opt. Lett. 25, 1355-1357 (2000).
    [CrossRef]
  19. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt, �??Simplified method for polarization-sensitive optical coherence tomography,�?? Opt. Lett. 26, 1069-1071 (2001).
    [CrossRef]
  20. M. C. Pierce, B. H. Park, B. Cense, J. F. de Boer, "Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography," Opt. Lett. 27, 1534-1536 (2002).
    [CrossRef]
  21. S. L. Jiao, W. R. Yu, G. Stoica, L. H. V. Wang, �??Optical-fiber-based Mueller optical coherence tomography,�?? Opt. Lett. 28, 1206-1208 (2003).
    [CrossRef] [PubMed]
  22. D. P. Davé, T. Akkin, T. E. Milner, �??Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,�?? Opt. Lett. 28, 1775-1777 (2003).
    [CrossRef] [PubMed]
  23. S. Guo, J. Zhang, L. Wang, J. S. Nelson, Z. Chen, �??Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography,�?? Opt. Lett. 29, 2025-2027 (2004).
    [CrossRef] [PubMed]
  24. B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, �??Real-time multi-functional optical coherence tomography,�?? Opt. Express 11, 782-793 (2003).
    [CrossRef] [PubMed]
  25. B. H. Park, M. C. Pierce, B. Cense, S-H Yun, M. Mujat, G. J. Tearney, B. E. Bouma, J. F. de Boer, �??Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,�?? Opt. Express 13, 3931-3944 (2005).
    [CrossRef] [PubMed]
  26. P. R. Wheater, H. G. Burkitt, V. G. Daniels, Functional Histology, 2nd Ed., Ch. 8 (Churchill Livingstone, New York, 1987).
  27. J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, J. F. de Boer, �??Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,�?? J. Biomed. Opt. 9, 292-298 (2004).
    [CrossRef] [PubMed]
  28. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer, �??Advances in optical coherence tomography for dermatology,�?? J. Invest. Dermatol. 123, 458-463 (2004).
    [CrossRef] [PubMed]
  29. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, �??Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,�?? Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
    [CrossRef] [PubMed]

Acad. Radiol.

B. E. Bouma, G. J. Tearney, �??Clinical imaging with optical coherence tomography,�?? Acad. Radiol. 9, 942-953 (2002).
[CrossRef] [PubMed]

Appl. Opt.

Invest. Ophthalmol. Vis. Sci.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, �??Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,�?? Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, J. F. de Boer, �??Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,�?? J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

J. Invest. Dermatol.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, J. F. de Boer, �??Advances in optical coherence tomography for dermatology,�?? J. Invest. Dermatol. 123, 458-463 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

B. E. Bouma, G. J. Tearney, �??Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,�?? Opt. Lett. 24, 531-533 (1999).
[CrossRef]

A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, Jr., J. A. Izatt, �??Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,�?? Opt. Lett. 24, 1358-1360 (1999).
[CrossRef]

G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, J. G. Fujimoto, �??Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,�?? Opt. Lett. 21, 543-545 (1996).
[CrossRef] [PubMed]

Y. Pan, H. Xie, G. K. Fedder, �??Endoscopic optical coherence tomography based on a microelectromechanical mirror," Opt. Lett. 26, 1966-1968 (2001).
[CrossRef]

P. H. Tran, D. S. Mukai, M. Brenner, Z. Chen, �??In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,�?? Opt. Lett. 29, 1236-1238 (2004).
[CrossRef] [PubMed]

P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, C. Petersen, �??Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 29, 2261-2263 (2004).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, �??Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,�?? Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., L. B. Da Silva, �??Birefringence characterization of biological tissue by use of optical coherence tomography,�?? Opt. Lett. 23, 228-230 (1998).
[CrossRef]

J. F. de Boer, T. E. Milner, J. S. Nelson, �??Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,�?? Opt. Lett. 24, 300-302 (1999).
[CrossRef]

G. Yao, L. V. Wang, �??Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,�?? Opt. Lett. 24, 537-539 (1999).
[CrossRef]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, �??High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,�?? Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt, �??Simplified method for polarization-sensitive optical coherence tomography,�?? Opt. Lett. 26, 1069-1071 (2001).
[CrossRef]

M. C. Pierce, B. H. Park, B. Cense, J. F. de Boer, "Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography," Opt. Lett. 27, 1534-1536 (2002).
[CrossRef]

S. L. Jiao, W. R. Yu, G. Stoica, L. H. V. Wang, �??Optical-fiber-based Mueller optical coherence tomography,�?? Opt. Lett. 28, 1206-1208 (2003).
[CrossRef] [PubMed]

D. P. Davé, T. Akkin, T. E. Milner, �??Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,�?? Opt. Lett. 28, 1775-1777 (2003).
[CrossRef] [PubMed]

S. Guo, J. Zhang, L. Wang, J. S. Nelson, Z. Chen, �??Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography,�?? Opt. Lett. 29, 2025-2027 (2004).
[CrossRef] [PubMed]

Science

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, �??In vivo endoscopic optical biopsy with optical coherence tomography,�?? Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Other

P. R. Wheater, H. G. Burkitt, V. G. Daniels, Functional Histology, 2nd Ed., Ch. 8 (Churchill Livingstone, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Evolution of the polarization states of light detected from the distal end of each fiber probe during image acquisition, for a stationary probe (left), linear scanning probe (center), and rotary scanning probe (right). Polarization states are displayed on the Poincaré sphere as endpoints of the calculated Stokes vectors at the detectors, on double-pass following reflection at the distal tip.

Fig. 2.
Fig. 2.

Distribution of absolute values of angles between each of the 2048 Stokes vectors shown in Fig. 1 (left) and the mean Stokes vector, for each of the two incident polarization states. The solid black line shows a theoretical probability density function (Eq. 1) based on a 2-dimensional Gaussian distribution, fit to the measured data.

Fig. 3.
Fig. 3.

Retardation angle (defined as the mean angle through which the Stokes vectors are rotated), for the pair of incident polarization states displayed in Fig. 1 left (stationary probe), center (linear scanning probe), and right (rotary scanning probe). Blue arrows indicate the scan range used to generate a single image.

Fig. 4.
Fig. 4.

Measured backscattered intensity and accumulated double-pass phase retardation for quarter wave plate.

Fig. 5.
Fig. 5.

Phase retardation angle measured between the surface and first point in depth within the tissue sample, as a function of the number of A-lines over which Stokes vectors are averaged, for the rotary probe example shown in Fig. 7.

Fig. 6.
Fig. 6.

Top: conventional (left) and polarization-sensitive (right) images of an ex vivo human meniscus specimen. The box indicates the region where the double-pass phase retardation rate is quantified (see text). Images are 4 mm wide and 1.2 mm deep. The probe sheath is indicated in the conventional OCT image (s). Bottom: corresponding histology with trichrome stain.

Fig. 7.
Fig. 7.

Conventional (a) and polarization-sensitive (b, c) images of ex-vivo human coronary tissue, obtained with the rotary scanning probe. The polarization-sensitive images were generated using either individual surface states (b), or averaged surface states (c). Corresponding histologic sections, with H&E (d) and trichrome stain (e). Surface polarization states used to generate the polarization-sensitive images above (f). Scale bars = 0.5 mm.

Tables (1)

Tables Icon

Table 1. Measured values of double pass phase retardation (DPPR) for a quarter wave plate

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P θ θ 0 σ = 2 πθ σ 2 π exp ( ( θ θ 0 ) 2 σ 2 )

Metrics