Abstract

We report on the observation of efficient and ultra-broadband white light super-continuum generated by focusing femtosecond pulses from an optical parametric amplifier at 1.5 μm in silica glass. The characteristic white light spectrum is extending from 400 nm up to at least 1750 nm. At sufficiently high input powers stable white light patterns associated with the interference of spatially coherent filamentary sources were observed and analyzed. Unlike focusing with 800 nm pulses from a Ti-sapphire laser, the stable fringes formed for each spectral component were pronounced owing to significantly reduced destructive impact of optical breakdown on filamentation of femtosecond pulses at 1.5 μm. By taking advantage of this property, the formation of optical waveguides in silica glass with considerably broader range of writing parameters as compared to those fabricated with 800 nm pulses, was demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.R. Alfano and S.L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [Crossref]
  2. P.B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phy. Rev. Lett. 57, 2268–2271 (1986).
    [Crossref]
  3. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
    [Crossref] [PubMed]
  4. E.T. Nibbering, P.E. Curley, G. Grillon, B.S. Prade, M.A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
    [Crossref] [PubMed]
  5. S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, and V.P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
    [Crossref]
  6. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
    [Crossref]
  7. Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
    [Crossref]
  8. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O.G. Kosareva, and V.P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
    [Crossref] [PubMed]
  9. S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phy. Rev. Lett. 86, 5470–5473 (2001).
    [Crossref]
  10. G. Yang and Y.R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9, 510–512 (1984).
    [Crossref] [PubMed]
  11. P.B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. QE-25, 2634–2639 (1989).
    [Crossref]
  12. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
    [Crossref]
  13. A.L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
    [Crossref]
  14. A.L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phy. Rev. Lett. 84, 3582–3585 (2000).
    [Crossref]
  15. A. Penzkofer, A. Seilmeier, and W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
    [Crossref]
  16. A. Brodeur and S.L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
    [Crossref]
  17. M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phy. Rev. Lett. 91, 043905–1 (2003).
    [Crossref]
  18. J.H. Marburger, “Self-focusing theory,” Prog. Quantum Electron. 4, 35–110 (1975).
    [Crossref]
  19. S.L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light,” Jpn. J. Appl. Phys. Part 2  38, L126–128 (1999).
    [Crossref]
  20. I. Golub, “Optical characteristics of supercontinuum generation,” Opt. Lett. 15, 305–307 (1990).
    [Crossref] [PubMed]
  21. Q. Xing, K.M. Yoo, and R.R. Alfano, “Conical emission by four-photon parametric generation using femtosecond laser pulses,” Appl. Opt. 32, 2087–2089 (1993).
    [Crossref] [PubMed]
  22. O.G. Kosareva, V.P. Kandidov, A. Brodeur, C.Y. Chien, and S.L. Chin, “Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air,” Opt. Lett.,  22, 1332–1334 (1997).
    [Crossref]
  23. N. T. Nguyen, A. Saliminia, W. Liu, S.L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28, 1591–1593 (2003).
    [Crossref] [PubMed]
  24. N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
    [Crossref]
  25. C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, “Generation and characterization of ultrafast white-light continuum in condensed media,” Appl. Opt. 41, 3735–3742 (2002).
    [Crossref] [PubMed]
  26. K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinnum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
    [Crossref]
  27. A. Saliminia, R. Vallee, and S.L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” to be published in Opt. Commun.

2003 (3)

M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phy. Rev. Lett. 91, 043905–1 (2003).
[Crossref]

N. T. Nguyen, A. Saliminia, W. Liu, S.L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28, 1591–1593 (2003).
[Crossref] [PubMed]

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinnum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
[Crossref]

2002 (2)

2001 (1)

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phy. Rev. Lett. 86, 5470–5473 (2001).
[Crossref]

2000 (1)

A.L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phy. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

1999 (3)

S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, and V.P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[Crossref]

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
[Crossref]

S.L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light,” Jpn. J. Appl. Phys. Part 2  38, L126–128 (1999).
[Crossref]

1998 (1)

A. Brodeur and S.L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

1997 (4)

O.G. Kosareva, V.P. Kandidov, A. Brodeur, C.Y. Chien, and S.L. Chin, “Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air,” Opt. Lett.,  22, 1332–1334 (1997).
[Crossref]

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O.G. Kosareva, and V.P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22, 304–306 (1997).
[Crossref] [PubMed]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

1996 (1)

1995 (1)

1993 (1)

1990 (1)

1989 (1)

P.B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. QE-25, 2634–2639 (1989).
[Crossref]

1986 (1)

P.B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phy. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

1984 (1)

1975 (2)

A. Penzkofer, A. Seilmeier, and W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
[Crossref]

J.H. Marburger, “Self-focusing theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

1973 (1)

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[Crossref]

1970 (1)

R.R. Alfano and S.L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Alfano, R.R.

Q. Xing, K.M. Yoo, and R.R. Alfano, “Conical emission by four-photon parametric generation using femtosecond laser pulses,” Appl. Opt. 32, 2087–2089 (1993).
[Crossref] [PubMed]

R.R. Alfano and S.L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Bergé, L.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phy. Rev. Lett. 86, 5470–5473 (2001).
[Crossref]

Bloembergen, N.

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[Crossref]

Borne, F.

S.L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light,” Jpn. J. Appl. Phys. Part 2  38, L126–128 (1999).
[Crossref]

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

Braun, A.

Brodeur, A.

Chien, C. Y.

Chien, C.Y.

Chin, S. L.

Chin, S.L.

N. T. Nguyen, A. Saliminia, W. Liu, S.L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28, 1591–1593 (2003).
[Crossref] [PubMed]

S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, and V.P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[Crossref]

S.L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light,” Jpn. J. Appl. Phys. Part 2  38, L126–128 (1999).
[Crossref]

A. Brodeur and S.L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

O.G. Kosareva, V.P. Kandidov, A. Brodeur, C.Y. Chien, and S.L. Chin, “Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air,” Opt. Lett.,  22, 1332–1334 (1997).
[Crossref]

A. Saliminia, R. Vallee, and S.L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” to be published in Opt. Commun.

Cook, K.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinnum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
[Crossref]

Corkum, P.B.

P.B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. QE-25, 2634–2639 (1989).
[Crossref]

P.B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phy. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Couairon, A.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phy. Rev. Lett. 86, 5470–5473 (2001).
[Crossref]

Curley, P.E.

Du, D.

Feng, Q.

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Franco, M.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phy. Rev. Lett. 86, 5470–5473 (2001).
[Crossref]

Franco, M.A.

Gaeta, A.L.

A.L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
[Crossref]

A.L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phy. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

Golub, I.

Grillon, G.

Hammer, D.X.

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Ilkov, F. A.

Kaiser, W.

A. Penzkofer, A. Seilmeier, and W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
[Crossref]

Kandidov, V.P.

Kar, A. K.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinnum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
[Crossref]

Katona, G.

M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phy. Rev. Lett. 91, 043905–1 (2003).
[Crossref]

Kawano, H.

Kennedy, P.K.

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Kolesik, M.

M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phy. Rev. Lett. 91, 043905–1 (2003).
[Crossref]

Kook, K.

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Korn, G.

Kosareva, O.G.

Krausz, F.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

Lamb, R. A.

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinnum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
[Crossref]

Liu, W.

Liu, X.

Marburger, J.H.

J.H. Marburger, “Self-focusing theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Midorikawa, K.

Miyazaki, K.

S.L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light,” Jpn. J. Appl. Phys. Part 2  38, L126–128 (1999).
[Crossref]

Moloney, J.V.

M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phy. Rev. Lett. 91, 043905–1 (2003).
[Crossref]

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Mourou, G.

Mysyrowicz, A.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phy. Rev. Lett. 86, 5470–5473 (2001).
[Crossref]

E.T. Nibbering, P.E. Curley, G. Grillon, B.S. Prade, M.A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62–64 (1996).
[Crossref] [PubMed]

Nagura, C.

Newell, A.C.

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Nguyen, N. T.

Nibbering, E.T.

Obara, M.

Penzkofer, A.

A. Penzkofer, A. Seilmeier, and W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
[Crossref]

Petit, S.

S.L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light,” Jpn. J. Appl. Phys. Part 2  38, L126–128 (1999).
[Crossref]

S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, and V.P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[Crossref]

Prade, B.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phy. Rev. Lett. 86, 5470–5473 (2001).
[Crossref]

Prade, B.S.

Rockwell, B.A.

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Rolland, C.

P.B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. QE-25, 2634–2639 (1989).
[Crossref]

P.B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phy. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Saliminia, A.

N. T. Nguyen, A. Saliminia, W. Liu, S.L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28, 1591–1593 (2003).
[Crossref] [PubMed]

A. Saliminia, R. Vallee, and S.L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” to be published in Opt. Commun.

Salin, F.

Seilmeier, A.

A. Penzkofer, A. Seilmeier, and W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
[Crossref]

Shapiro, S.L.

R.R. Alfano and S.L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Shen, Y.R.

Squier, J.

Srinivasan-Rao, T.

P.B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phy. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Suda, A.

Thompson, C.R.

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Tzortzakis, S.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phy. Rev. Lett. 86, 5470–5473 (2001).
[Crossref]

Vallee, R.

A. Saliminia, R. Vallee, and S.L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” to be published in Opt. Commun.

Vallée, R.

Wright, E.M.

M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phy. Rev. Lett. 91, 043905–1 (2003).
[Crossref]

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Xing, Q.

Yang, G.

Yoo, K.M.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. Cook, A. K. Kar, and R. A. Lamb, “White-light supercontinnum interference of self-focused filaments in water,” Appl. Phys. Lett. 83, 3861–3863 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

Q. Feng, J.V. Moloney, A.C. Newell, E.M. Wright, K. Kook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, and C.R. Thompson, “Theory and simulation of the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

P.B. Corkum and C. Rolland, “Femtosecond continua produced in gases,” IEEE J. Quantum Electron. QE-25, 2634–2639 (1989).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, and V.P. Kandidov, “Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser),” J. Nonlinear Opt. Phys. Mater. 8, 121–146 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S.L. Chin, S. Petit, F. Borne, and K. Miyazaki, “The white light supercontinuum is indeed an ultrafast white light,” Jpn. J. Appl. Phys. Part 2  38, L126–128 (1999).
[Crossref]

Opt. Commun. (2)

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[Crossref]

A. Penzkofer, A. Seilmeier, and W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
[Crossref]

Opt. Lett. (8)

Phy. Rev. Lett. (4)

P.B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phy. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phy. Rev. Lett. 86, 5470–5473 (2001).
[Crossref]

A.L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phy. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright, “Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,” Phy. Rev. Lett. 91, 043905–1 (2003).
[Crossref]

Phys. Rev. Lett. (3)

A. Brodeur and S.L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[Crossref]

R.R. Alfano and S.L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Prog. Quantum Electron. (1)

J.H. Marburger, “Self-focusing theory,” Prog. Quantum Electron. 4, 35–110 (1975).
[Crossref]

Other (1)

A. Saliminia, R. Vallee, and S.L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” to be published in Opt. Commun.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Digital photograph of the white light SC induced by focusing (a) 1.5 μm and (b) 800 nm pulses at 1.3 μJ using the 1x objective lens.

Fig. 2.
Fig. 2.

(a) Measured white light SC spectrum induced by focusing 1.5 μm pulses in the silica, (b) spectrum of the input pulse beam (without sample).

Fig. 3.
Fig. 3.

(a) Digital photograph of a typical white light interference fringe produced by focusing 4 μJ pulses at 1.5 μm inside the glass, (b) white light pattern created at 4 μJ with 800 nm pulses.

Fig. 4.
Fig. 4.

CCD images of the white light fringes (500 nm component) produced by a pair of filament for (a) single shot, (b) multi-shot irradiation (5000 pulses) of the silica with 7 μJ pulses at 1.5 μm, (c) two-dimensional line scans corresponding to the single and multi-shot irradiation images. The beam was focused in air very close to the input surface.

Fig. 5.
Fig. 5.

White light fringe images corresponding to those illustrated in Fig. 4 but now obtained with 800 nm pulses. The beam was focused in air very close to the input surface.

Fig. 6.
Fig. 6.

(a) Image of a pair of filament (500 nm component) formed by 7 μJ pulses at 1.5 μm, (b) image of a bunch of filaments produced at 34 μJ.

Metrics