Abstract

We report a set of experimental observations on electromagnetically induced transparency in acetylene filled hollow-core photonic crystal fiber, involving both Λ-type and V-type interactions over several lines of the R-branch of the v 1 + v 3 ro-vibrational overtone band. Transparency as high as ~70% was achieved. A theoretical account of the sources of decoherence shows that collisions with the inner wall of the fiber core and laser frequency-jitter dominate the coherence decay.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” in Physics Today (1997), pp. 36-42.
  2. G. Alzetta, A. Gozzini, and L. Moiet al., “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
    [Crossref]
  3. L. V. Hau, S. E. Harris, and Z. Duttonet al., “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594 (1999).
    [Crossref]
  4. C. Liu, Z. Dutton, and C. H. Behrooziet al., “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
    [Crossref] [PubMed]
  5. A. Aspect, E. Arimondo, and R. Kaiseret al., “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
    [Crossref] [PubMed]
  6. M. Jain, H. Xia, and G. Y. Yinet al., “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326-4329 (1996).
    [Crossref] [PubMed]
  7. K. Motomura, T. Koshimizu, and K-I. Haradaet al., “Subkilohertz linewidths measured by heteodyne-detected coherent population trapping in sodium vapor,” Opt. Lett. 29, 1141-1143 (2004).
    [Crossref] [PubMed]
  8. K-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
    [Crossref] [PubMed]
  9. H. Schmidt, K. L. Campman, and A. C. Gossardet al., “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455-3457 (1997).
    [Crossref]
  10. A. V. Turukhin, V. S. Sudarchanam, and M. S. Shahriaret al., “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
    [Crossref] [PubMed]
  11. J. Faist, F. Capasso, and C. Sirtoriet al., “Controlling the sign of quantum intereference by tunnelling from quantum wells,” Nature 390, 589 (1997).
    [Crossref]
  12. J. Qi, G. Lazarvo, and X. Wanget al., “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288-291 (1999).
    [Crossref]
  13. J. M. Brown, Molecular spectroscopy (Oxford University Press, Oxford, 1998).
  14. K. Nakagawa, M. de-Labachelerie, and Y. Awajiet al., “Accurate optical frequency atlas of the 1.5 mm bands of acetylene,” J. Opt. Soc. Am. B 13, 2708-2714 (1996).
    [Crossref]
  15. R.F. Cregan, B. J. Mangan, and J. C. Knightet al., “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
    [Crossref] [PubMed]
  16. Brian Mangan, Lance Farr, and Alan Langfordet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” presented at the Optical Fiber Communications Conference (OFC) 2004.
  17. F. Benabid, J. C. Knight, and G. Antonopouloset al., “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
    [Crossref] [PubMed]
  18. F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express. 10, 1195 (2002).
    [PubMed]
  19. F. Benabid, G. Bouwmans, and J.C. Knightet al., “Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
    [Crossref] [PubMed]
  20. F. Benabid, F. Couny, and J. C. Knightet al., “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488-491 (2005).
    [Crossref] [PubMed]
  21. S. Ghosh, J. Sharping, and D. G. Ouzounovet al., “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
    [Crossref] [PubMed]
  22. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
  23. J. Gea-Banacloche, Y. Q. Li, and S. Z. Jinet al., “Electromagnetically induced transparency in ladder-type inhomogeneousely broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
    [Crossref] [PubMed]
  24. E. Arimondo, “Relaxation processes in coherent-population trapping,” Phys. Rev. A 54, 2216-2223 (1996).
    [Crossref] [PubMed]
  25. M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: Theory and experiment,” Phys. Rev. A 63, 43813 (2001).
    [Crossref]
  26. C. P. Rinsland, A. Baldacci, and K. N. Rao, “Acetylene bands observed in carbon stars: a laboratory study and an illustrative example of its application,” Astrophys. J. Suppl. Ser. 49, 487-513 (1982).
    [Crossref]
  27. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510-1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263-1270 (2000).
    [Crossref]
  28. M. Graf and E. Arimondo, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
    [Crossref] [PubMed]
  29. E. L. Cussler, Diffusion: Mass transfer in fluid systems (Cambridge University Press, Cambridge, 1984).
  30. LS Ma, J Ye, and P Dubeet al., “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255 (1999).
    [Crossref]

2005 (2)

F. Benabid, F. Couny, and J. C. Knightet al., “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488-491 (2005).
[Crossref] [PubMed]

S. Ghosh, J. Sharping, and D. G. Ouzounovet al., “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

2004 (2)

F. Benabid, G. Bouwmans, and J.C. Knightet al., “Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

K. Motomura, T. Koshimizu, and K-I. Haradaet al., “Subkilohertz linewidths measured by heteodyne-detected coherent population trapping in sodium vapor,” Opt. Lett. 29, 1141-1143 (2004).
[Crossref] [PubMed]

2002 (3)

F. Benabid, J. C. Knight, and G. Antonopouloset al., “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express. 10, 1195 (2002).
[PubMed]

A. V. Turukhin, V. S. Sudarchanam, and M. S. Shahriaret al., “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

2001 (2)

C. Liu, Z. Dutton, and C. H. Behrooziet al., “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[Crossref] [PubMed]

M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: Theory and experiment,” Phys. Rev. A 63, 43813 (2001).
[Crossref]

2000 (1)

1999 (4)

LS Ma, J Ye, and P Dubeet al., “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255 (1999).
[Crossref]

L. V. Hau, S. E. Harris, and Z. Duttonet al., “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594 (1999).
[Crossref]

J. Qi, G. Lazarvo, and X. Wanget al., “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288-291 (1999).
[Crossref]

R.F. Cregan, B. J. Mangan, and J. C. Knightet al., “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[Crossref] [PubMed]

1997 (2)

H. Schmidt, K. L. Campman, and A. C. Gossardet al., “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455-3457 (1997).
[Crossref]

J. Faist, F. Capasso, and C. Sirtoriet al., “Controlling the sign of quantum intereference by tunnelling from quantum wells,” Nature 390, 589 (1997).
[Crossref]

1996 (3)

M. Jain, H. Xia, and G. Y. Yinet al., “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326-4329 (1996).
[Crossref] [PubMed]

K. Nakagawa, M. de-Labachelerie, and Y. Awajiet al., “Accurate optical frequency atlas of the 1.5 mm bands of acetylene,” J. Opt. Soc. Am. B 13, 2708-2714 (1996).
[Crossref]

E. Arimondo, “Relaxation processes in coherent-population trapping,” Phys. Rev. A 54, 2216-2223 (1996).
[Crossref] [PubMed]

1995 (2)

M. Graf and E. Arimondo, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[Crossref] [PubMed]

J. Gea-Banacloche, Y. Q. Li, and S. Z. Jinet al., “Electromagnetically induced transparency in ladder-type inhomogeneousely broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[Crossref] [PubMed]

1991 (1)

K-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[Crossref] [PubMed]

1988 (1)

A. Aspect, E. Arimondo, and R. Kaiseret al., “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[Crossref] [PubMed]

1982 (1)

C. P. Rinsland, A. Baldacci, and K. N. Rao, “Acetylene bands observed in carbon stars: a laboratory study and an illustrative example of its application,” Astrophys. J. Suppl. Ser. 49, 487-513 (1982).
[Crossref]

1976 (1)

G. Alzetta, A. Gozzini, and L. Moiet al., “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[Crossref]

Alzetta, G.

G. Alzetta, A. Gozzini, and L. Moiet al., “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[Crossref]

Antonopoulos, G.

F. Benabid, J. C. Knight, and G. Antonopouloset al., “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[Crossref] [PubMed]

Arimondo, E.

E. Arimondo, “Relaxation processes in coherent-population trapping,” Phys. Rev. A 54, 2216-2223 (1996).
[Crossref] [PubMed]

M. Graf and E. Arimondo, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[Crossref] [PubMed]

A. Aspect, E. Arimondo, and R. Kaiseret al., “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[Crossref] [PubMed]

Aspect, A.

A. Aspect, E. Arimondo, and R. Kaiseret al., “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[Crossref] [PubMed]

Awaji, Y.

Baldacci, A.

C. P. Rinsland, A. Baldacci, and K. N. Rao, “Acetylene bands observed in carbon stars: a laboratory study and an illustrative example of its application,” Astrophys. J. Suppl. Ser. 49, 487-513 (1982).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, and C. H. Behrooziet al., “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[Crossref] [PubMed]

Benabid, F.

F. Benabid, F. Couny, and J. C. Knightet al., “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488-491 (2005).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, and J.C. Knightet al., “Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express. 10, 1195 (2002).
[PubMed]

F. Benabid, J. C. Knight, and G. Antonopouloset al., “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[Crossref] [PubMed]

Boller, K-J.

K-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[Crossref] [PubMed]

Bouwmans, G.

F. Benabid, G. Bouwmans, and J.C. Knightet al., “Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

Brown, J. M.

J. M. Brown, Molecular spectroscopy (Oxford University Press, Oxford, 1998).

Campman, K. L.

H. Schmidt, K. L. Campman, and A. C. Gossardet al., “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455-3457 (1997).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, and C. Sirtoriet al., “Controlling the sign of quantum intereference by tunnelling from quantum wells,” Nature 390, 589 (1997).
[Crossref]

Couny, F.

F. Benabid, F. Couny, and J. C. Knightet al., “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488-491 (2005).
[Crossref] [PubMed]

Cregan, R.F.

R.F. Cregan, B. J. Mangan, and J. C. Knightet al., “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[Crossref] [PubMed]

Cussler, E. L.

E. L. Cussler, Diffusion: Mass transfer in fluid systems (Cambridge University Press, Cambridge, 1984).

de-Labachelerie, M.

Dube, P

Dutton, Z.

C. Liu, Z. Dutton, and C. H. Behrooziet al., “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, and Z. Duttonet al., “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594 (1999).
[Crossref]

Erhard, M.

M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: Theory and experiment,” Phys. Rev. A 63, 43813 (2001).
[Crossref]

Faist, J.

J. Faist, F. Capasso, and C. Sirtoriet al., “Controlling the sign of quantum intereference by tunnelling from quantum wells,” Nature 390, 589 (1997).
[Crossref]

Farr, Lance

Brian Mangan, Lance Farr, and Alan Langfordet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” presented at the Optical Fiber Communications Conference (OFC) 2004.

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Q. Li, and S. Z. Jinet al., “Electromagnetically induced transparency in ladder-type inhomogeneousely broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[Crossref] [PubMed]

Ghosh, S.

S. Ghosh, J. Sharping, and D. G. Ouzounovet al., “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

Gilbert, S. L.

Gossard, A. C.

H. Schmidt, K. L. Campman, and A. C. Gossardet al., “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455-3457 (1997).
[Crossref]

Gozzini, A.

G. Alzetta, A. Gozzini, and L. Moiet al., “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[Crossref]

Graf, M.

M. Graf and E. Arimondo, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[Crossref] [PubMed]

Harada, K-I.

Harris, S. E.

L. V. Hau, S. E. Harris, and Z. Duttonet al., “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594 (1999).
[Crossref]

K-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[Crossref] [PubMed]

S. E. Harris, “Electromagnetically induced transparency,” in Physics Today (1997), pp. 36-42.

Hau, L. V.

L. V. Hau, S. E. Harris, and Z. Duttonet al., “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594 (1999).
[Crossref]

Helm, H.

M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: Theory and experiment,” Phys. Rev. A 63, 43813 (2001).
[Crossref]

Imamoglu, A.

K-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[Crossref] [PubMed]

Jain, M.

M. Jain, H. Xia, and G. Y. Yinet al., “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326-4329 (1996).
[Crossref] [PubMed]

Jin, S. Z.

J. Gea-Banacloche, Y. Q. Li, and S. Z. Jinet al., “Electromagnetically induced transparency in ladder-type inhomogeneousely broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[Crossref] [PubMed]

Kaiser, R.

A. Aspect, E. Arimondo, and R. Kaiseret al., “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[Crossref] [PubMed]

Knight, J. C.

F. Benabid, F. Couny, and J. C. Knightet al., “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488-491 (2005).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, and G. Antonopouloset al., “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express. 10, 1195 (2002).
[PubMed]

R.F. Cregan, B. J. Mangan, and J. C. Knightet al., “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[Crossref] [PubMed]

Knight, J.C.

F. Benabid, G. Bouwmans, and J.C. Knightet al., “Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

Koshimizu, T.

Langford, Alan

Brian Mangan, Lance Farr, and Alan Langfordet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” presented at the Optical Fiber Communications Conference (OFC) 2004.

Lazarvo, G.

J. Qi, G. Lazarvo, and X. Wanget al., “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288-291 (1999).
[Crossref]

Li, Y. Q.

J. Gea-Banacloche, Y. Q. Li, and S. Z. Jinet al., “Electromagnetically induced transparency in ladder-type inhomogeneousely broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[Crossref] [PubMed]

Liu, C.

C. Liu, Z. Dutton, and C. H. Behrooziet al., “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[Crossref] [PubMed]

Ma, LS

Mangan, B. J.

R.F. Cregan, B. J. Mangan, and J. C. Knightet al., “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[Crossref] [PubMed]

Mangan, Brian

Brian Mangan, Lance Farr, and Alan Langfordet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” presented at the Optical Fiber Communications Conference (OFC) 2004.

Moi, L.

G. Alzetta, A. Gozzini, and L. Moiet al., “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[Crossref]

Motomura, K.

Nakagawa, K.

Ouzounov, D. G.

S. Ghosh, J. Sharping, and D. G. Ouzounovet al., “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

Qi, J.

J. Qi, G. Lazarvo, and X. Wanget al., “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288-291 (1999).
[Crossref]

Rao, K. N.

C. P. Rinsland, A. Baldacci, and K. N. Rao, “Acetylene bands observed in carbon stars: a laboratory study and an illustrative example of its application,” Astrophys. J. Suppl. Ser. 49, 487-513 (1982).
[Crossref]

Rinsland, C. P.

C. P. Rinsland, A. Baldacci, and K. N. Rao, “Acetylene bands observed in carbon stars: a laboratory study and an illustrative example of its application,” Astrophys. J. Suppl. Ser. 49, 487-513 (1982).
[Crossref]

Russell, P. St. J.

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express. 10, 1195 (2002).
[PubMed]

Schmidt, H.

H. Schmidt, K. L. Campman, and A. C. Gossardet al., “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455-3457 (1997).
[Crossref]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarchanam, and M. S. Shahriaret al., “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

Sharping, J.

S. Ghosh, J. Sharping, and D. G. Ouzounovet al., “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

Sirtori, C.

J. Faist, F. Capasso, and C. Sirtoriet al., “Controlling the sign of quantum intereference by tunnelling from quantum wells,” Nature 390, 589 (1997).
[Crossref]

Sudarchanam, V. S.

A. V. Turukhin, V. S. Sudarchanam, and M. S. Shahriaret al., “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

Swann, W. C.

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarchanam, and M. S. Shahriaret al., “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

Wang, X.

J. Qi, G. Lazarvo, and X. Wanget al., “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288-291 (1999).
[Crossref]

Xia, H.

M. Jain, H. Xia, and G. Y. Yinet al., “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326-4329 (1996).
[Crossref] [PubMed]

Ye, J

Yin, G. Y.

M. Jain, H. Xia, and G. Y. Yinet al., “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326-4329 (1996).
[Crossref] [PubMed]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

Appl. Phys. Lett. (1)

H. Schmidt, K. L. Campman, and A. C. Gossardet al., “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455-3457 (1997).
[Crossref]

Astrophys. J. Suppl. Ser. (1)

C. P. Rinsland, A. Baldacci, and K. N. Rao, “Acetylene bands observed in carbon stars: a laboratory study and an illustrative example of its application,” Astrophys. J. Suppl. Ser. 49, 487-513 (1982).
[Crossref]

J. Opt. Soc. Am. B (3)

Nature (4)

J. Faist, F. Capasso, and C. Sirtoriet al., “Controlling the sign of quantum intereference by tunnelling from quantum wells,” Nature 390, 589 (1997).
[Crossref]

L. V. Hau, S. E. Harris, and Z. Duttonet al., “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594 (1999).
[Crossref]

C. Liu, Z. Dutton, and C. H. Behrooziet al., “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[Crossref] [PubMed]

F. Benabid, F. Couny, and J. C. Knightet al., “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488-491 (2005).
[Crossref] [PubMed]

Nuovo Cimento B (1)

G. Alzetta, A. Gozzini, and L. Moiet al., “An experimental method for the observation of RF transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[Crossref]

Opt. Express. (1)

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express. 10, 1195 (2002).
[PubMed]

Opt. Lett. (1)

Phys. Rev. A (4)

J. Gea-Banacloche, Y. Q. Li, and S. Z. Jinet al., “Electromagnetically induced transparency in ladder-type inhomogeneousely broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[Crossref] [PubMed]

E. Arimondo, “Relaxation processes in coherent-population trapping,” Phys. Rev. A 54, 2216-2223 (1996).
[Crossref] [PubMed]

M. Erhard and H. Helm, “Buffer-gas effects on dark resonances: Theory and experiment,” Phys. Rev. A 63, 43813 (2001).
[Crossref]

M. Graf and E. Arimondo, “Doppler broadening and collisional relaxation effects in a lasing-without-inversion experiment,” Phys. Rev. A 51, 4030-4037 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (7)

S. Ghosh, J. Sharping, and D. G. Ouzounovet al., “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref] [PubMed]

K-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[Crossref] [PubMed]

A. Aspect, E. Arimondo, and R. Kaiseret al., “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[Crossref] [PubMed]

M. Jain, H. Xia, and G. Y. Yinet al., “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326-4329 (1996).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, and J.C. Knightet al., “Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref] [PubMed]

J. Qi, G. Lazarvo, and X. Wanget al., “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288-291 (1999).
[Crossref]

A. V. Turukhin, V. S. Sudarchanam, and M. S. Shahriaret al., “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[Crossref] [PubMed]

Science (2)

R.F. Cregan, B. J. Mangan, and J. C. Knightet al., “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, and G. Antonopouloset al., “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[Crossref] [PubMed]

Other (5)

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

E. L. Cussler, Diffusion: Mass transfer in fluid systems (Cambridge University Press, Cambridge, 1984).

Brian Mangan, Lance Farr, and Alan Langfordet al., “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” presented at the Optical Fiber Communications Conference (OFC) 2004.

J. M. Brown, Molecular spectroscopy (Oxford University Press, Oxford, 1998).

S. E. Harris, “Electromagnetically induced transparency,” in Physics Today (1997), pp. 36-42.

Supplementary Material (1)

» Media 1: GIF (48 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic illustration of the energy level diagram of rotational transitions between two vibrational states (v and v’). The rotational transitions in the P-branch correspond to transitions accompanied by an excess of one unit of angular momentum, i.e. ΔJ = -1 , and in R-branch to transitions with ΔJ = +1 With this system a combination of control-probe lasers resonant with P(J+1)-R(J-1) forms a Λ interaction and P(J+1)-R(J+1) forms a V interaction producing a comb of transparencies over the spectrum covered by the R-branch.

Fig. 2.
Fig. 2.

Schematic representation of the experimental set-up. PD: photodetector, IF: interference filters, S: splice between the HC-PCF and a solid SMF, FPC: fiber polarization controller, EDFA: erbium-doped fiber amplifier, ECDL: external cavity diode laser. The inset on the left-hand side is a SEM of the HC-PCF used as the acetylene cell.

Fig. 3.
Fig. 3.

(a) The transmission spectrum of a ~1m long acetylene-filled HC-PCF at a pressure of ~0.1-1 mbar. Inset: schematics of Λ and V interactions. (b) Measured (black line) and theoretical (grey line) transmission spectra for coupled power in the range of 400-500 mW, gas pressure in the range of 0.1-1 mbar and a fiber length of ~2 m. The asymmetry in some of the transparency traces are due to the probe-frequency detuning from the absorption transition.

Fig. 4.
Fig. 4.

Evolution with the control-laser Rabi frequency of the transparency height (A) and full-width-at-half-maximum (B). The operating pressure range is 0.1-1 mbar and the fiber length is ~2 m.

Fig. 5.
Fig. 5.

(49 kB) Animation of the evolution of the electromagnetically induced transparency with control-laser power launched into the HC-PCF for P(15)-R(13) combination.

Fig. 6.
Fig. 6.

Measured and theoretical transmission trace of R(11) line in the absence of control beam (A) and in the presence of ~800 mW control power (B). The operating pressure range is 0.001-0.01 mbar and length of fiber ~2m.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χ = 1 2 ic μ 2 N π ε 0 ħ ω P u e ( z 2 ) [ 1 E rf ( z ) ] ,
z = c ω P u [ γ od i Δ P + Ω c 2 4 γ gr i ( Δ P Δ C ) ] ,
γ od = Γ sp + γ coll 2 + δ ω P 2 and γ gr = γ coll + γ tf + δ ω P 2 + δ ω C 2
γ od γ coll wall 2 and γ gr γ coll wall + δ ω C 2 .

Metrics