Abstract

We report both theoretical and experimental results of a slit beam shaping configuration for fabricating photonic waveguides by use of femtosecond laser pulses. Most importantly we show the method supports focussing objectives with a long depth of field and allows the direct-writing of microstructures with circular cross-sections whilst employing a perpendicular writing scheme. We applied this technique to write low loss (0.39 dB/cm), single mode waveguides in phosphate glass.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto and K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729�??1731 (1996).
    [CrossRef] [PubMed]
  2. A. Saliminia, N. T. Nguyen, M. C. Nadeau S. Petit, S. L. Chin and R. Vallee, �??Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,�?? Appl. Phys. 93, 3724�??3728 (2003).
  3. K. Miura, H. Inouye, J. Qiu, T. Mitsuyu and K. Hirao, �??Optical waveguides induced in inorganic glasses by a femtosecond laser,�?? Opt. Lett. 21, 1729�??1731 (1996).
    [PubMed]
  4. K. Hirao, and K. Miura, �??Writing waveguides and gratings in silica and related materials by a femtosecond laser,�?? J. Non-Crys. Sol. 239, 91�??95 (1998).
    [CrossRef]
  5. S. Nolte, M. Will, J. Burghoff and A. Tünnermann, �??Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,�?? Appl. Phys. A 77, 109�??111 (2003).
    [CrossRef]
  6. R. Osellame, S. Taccheo, M. Marangoni et al., �??Femtosecond writing of active optical waveguides with astigmatically shaped beams,�?? J. Opt. Soc. Am. B 20, 1559�??1567 (2003).
    [CrossRef]
  7. Y. Cheng, K. Sugioka, K. Midorikawa et al., �??Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,�?? Opt. Lett. 28, 55�??57 (2003).
    [CrossRef] [PubMed]
  8. S. Ho, P. Herman, Y. Cheng, K. Sugioka and K. Midorikawa, �??Direct ultrafast laser writing of buried waveguides in Foturan glass,�?? in OSA Conference on Lasers and Electro-Optics (CLEO), CThD6 (2004).
  9. D. Little, G. D. Marshall, M. Ams and M. J. Withford, �??Near-field scanning optical microscopy of femtosecond laser written waveguides,�?? in Advanced Solid State Photonics (ASSP), WB13 (2005).
  10. R. Osellame, N. Chiodo, G. Della Valle et al., �??Optical waveguide writing with a diode-pumped femtosecond oscillator,�?? Opt. Lett. 29, 1900�??1902 (2004).
    [CrossRef] [PubMed]
  11. S. Taccheo, G. Della Valle, R. Osellame et al., �??Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,�?? Opt. Lett. 29, 2626�??2628 (2004).
    [CrossRef] [PubMed]

Appl. Phys.

A. Saliminia, N. T. Nguyen, M. C. Nadeau S. Petit, S. L. Chin and R. Vallee, �??Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,�?? Appl. Phys. 93, 3724�??3728 (2003).

Appl. Phys. A

S. Nolte, M. Will, J. Burghoff and A. Tünnermann, �??Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,�?? Appl. Phys. A 77, 109�??111 (2003).
[CrossRef]

ASSP 2005

D. Little, G. D. Marshall, M. Ams and M. J. Withford, �??Near-field scanning optical microscopy of femtosecond laser written waveguides,�?? in Advanced Solid State Photonics (ASSP), WB13 (2005).

CLEO 2004

S. Ho, P. Herman, Y. Cheng, K. Sugioka and K. Midorikawa, �??Direct ultrafast laser writing of buried waveguides in Foturan glass,�?? in OSA Conference on Lasers and Electro-Optics (CLEO), CThD6 (2004).

J. Non-Crys. Sol.

K. Hirao, and K. Miura, �??Writing waveguides and gratings in silica and related materials by a femtosecond laser,�?? J. Non-Crys. Sol. 239, 91�??95 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) beam evolution near focus not using slit, (b) energy distribution in YZ plane not using slit, (c) beam evolution near focus using slit, (d) energy distribution in YZ plane using slit where x corresponds with the direction of the beam translation and the waveguide axis.

Fig. 2.
Fig. 2.

DIC microscope images of waveguides fabricated in phosphate (a) without a slit and (b) with a 500 μm slit.

Fig. 3.
Fig. 3.

(a) Far field distribution of the waveguide at 635 nm and (b) near field image of the waveguide mode at 635 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ω x = π W x and ω y = π W y .
Z Rx Z Ry = W y 2 W x 2 .
2 ω x = ω x [ 1 + ( λ X I o 2 π ω x 2 ) 2 ] 1 2
X I o 2 = 3 π λ ω x 2 .
I o 2 = I o exp ( Y I o 2 2 ω y 2 )
Y I o 2 = In 2 ω y .
X I o 2 = Y I o 2
W y W x = NA In 2 3 for W x > 3 W y ,
NA W x f .
W y W x = NA n In 2 3 for W x > 3 W y ,

Metrics