Abstract

We report both theoretical and experimental results of a slit beam shaping configuration for fabricating photonic waveguides by use of femtosecond laser pulses. Most importantly we show the method supports focussing objectives with a long depth of field and allows the direct-writing of microstructures with circular cross-sections whilst employing a perpendicular writing scheme. We applied this technique to write low loss (0.39 dB/cm), single mode waveguides in phosphate glass.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  2. A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallee, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” Appl. Phys. 93, 3724–3728 (2003).
  3. K. Miura, H. Inouye, J. Qiu, T. Mitsuyu, and K. Hirao, “Optical waveguides induced in inorganic glasses by a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [PubMed]
  4. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys. Sol. 239, 91–95 (1998).
    [CrossRef]
  5. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
    [CrossRef]
  6. R. Osellame, S. Taccheo, and M. Marangoniet al., “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
    [CrossRef]
  7. Y. Cheng, K. Sugioka, and K. Midorikawaet al., “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003).
    [CrossRef] [PubMed]
  8. S. Ho, P. Herman, Y. Cheng, K. Sugioka, and K. Midorikawa, “Direct ultrafast laser writing of buried waveguides in Foturan glass,” in OSA Conference on Lasers and Electro-Optics (CLEO), CThD6 (2004).
  9. D. Little, G. D. Marshall, M. Ams, and M. J. Withford, “Near-field scanning optical microscopy of femtosecond laser written waveguides,” in Advanced Solid State Photonics (ASSP), WB13 (2005).
  10. R. Osellame, N. Chiodo, and G. Della Valleet al., “Optical waveguide writing with a diode-pumped femtosecond oscillator,” Opt. Lett. 29, 1900–1902 (2004).
    [CrossRef] [PubMed]
  11. S. Taccheo, G. Della Valle, and R. Osellameet al., “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
    [CrossRef] [PubMed]

2004 (2)

2003 (4)

Y. Cheng, K. Sugioka, and K. Midorikawaet al., “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003).
[CrossRef] [PubMed]

R. Osellame, S. Taccheo, and M. Marangoniet al., “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559–1567 (2003).
[CrossRef]

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallee, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” Appl. Phys. 93, 3724–3728 (2003).

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

1998 (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys. Sol. 239, 91–95 (1998).
[CrossRef]

1996 (2)

Ams, M.

D. Little, G. D. Marshall, M. Ams, and M. J. Withford, “Near-field scanning optical microscopy of femtosecond laser written waveguides,” in Advanced Solid State Photonics (ASSP), WB13 (2005).

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Cheng, Y.

Y. Cheng, K. Sugioka, and K. Midorikawaet al., “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003).
[CrossRef] [PubMed]

S. Ho, P. Herman, Y. Cheng, K. Sugioka, and K. Midorikawa, “Direct ultrafast laser writing of buried waveguides in Foturan glass,” in OSA Conference on Lasers and Electro-Optics (CLEO), CThD6 (2004).

Chin, S. L.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallee, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” Appl. Phys. 93, 3724–3728 (2003).

Chiodo, N.

Davis, K. M.

Della Valle, G.

Herman, P.

S. Ho, P. Herman, Y. Cheng, K. Sugioka, and K. Midorikawa, “Direct ultrafast laser writing of buried waveguides in Foturan glass,” in OSA Conference on Lasers and Electro-Optics (CLEO), CThD6 (2004).

Hirao, K.

Ho, S.

S. Ho, P. Herman, Y. Cheng, K. Sugioka, and K. Midorikawa, “Direct ultrafast laser writing of buried waveguides in Foturan glass,” in OSA Conference on Lasers and Electro-Optics (CLEO), CThD6 (2004).

Inouye, H.

Little, D.

D. Little, G. D. Marshall, M. Ams, and M. J. Withford, “Near-field scanning optical microscopy of femtosecond laser written waveguides,” in Advanced Solid State Photonics (ASSP), WB13 (2005).

Marangoni, M.

Marshall, G. D.

D. Little, G. D. Marshall, M. Ams, and M. J. Withford, “Near-field scanning optical microscopy of femtosecond laser written waveguides,” in Advanced Solid State Photonics (ASSP), WB13 (2005).

Midorikawa, K.

Y. Cheng, K. Sugioka, and K. Midorikawaet al., “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003).
[CrossRef] [PubMed]

S. Ho, P. Herman, Y. Cheng, K. Sugioka, and K. Midorikawa, “Direct ultrafast laser writing of buried waveguides in Foturan glass,” in OSA Conference on Lasers and Electro-Optics (CLEO), CThD6 (2004).

Mitsuyu, T.

Miura, K.

Nadeau, M. C.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallee, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” Appl. Phys. 93, 3724–3728 (2003).

Nguyen, N. T.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallee, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” Appl. Phys. 93, 3724–3728 (2003).

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Osellame, R.

Petit, S.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallee, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” Appl. Phys. 93, 3724–3728 (2003).

Qiu, J.

Saliminia, A.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallee, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” Appl. Phys. 93, 3724–3728 (2003).

Sugimoto, N.

Sugioka, K.

Y. Cheng, K. Sugioka, and K. Midorikawaet al., “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003).
[CrossRef] [PubMed]

S. Ho, P. Herman, Y. Cheng, K. Sugioka, and K. Midorikawa, “Direct ultrafast laser writing of buried waveguides in Foturan glass,” in OSA Conference on Lasers and Electro-Optics (CLEO), CThD6 (2004).

Taccheo, S.

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Vallee, R.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallee, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” Appl. Phys. 93, 3724–3728 (2003).

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Withford, M. J.

D. Little, G. D. Marshall, M. Ams, and M. J. Withford, “Near-field scanning optical microscopy of femtosecond laser written waveguides,” in Advanced Solid State Photonics (ASSP), WB13 (2005).

Appl. Phys. (1)

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallee, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” Appl. Phys. 93, 3724–3728 (2003).

Appl. Phys. A (1)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

J. Non-Crys. Sol. (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys. Sol. 239, 91–95 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Other (2)

S. Ho, P. Herman, Y. Cheng, K. Sugioka, and K. Midorikawa, “Direct ultrafast laser writing of buried waveguides in Foturan glass,” in OSA Conference on Lasers and Electro-Optics (CLEO), CThD6 (2004).

D. Little, G. D. Marshall, M. Ams, and M. J. Withford, “Near-field scanning optical microscopy of femtosecond laser written waveguides,” in Advanced Solid State Photonics (ASSP), WB13 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) beam evolution near focus not using slit, (b) energy distribution in YZ plane not using slit, (c) beam evolution near focus using slit, (d) energy distribution in YZ plane using slit where x corresponds with the direction of the beam translation and the waveguide axis.

Fig. 2.
Fig. 2.

DIC microscope images of waveguides fabricated in phosphate (a) without a slit and (b) with a 500 μm slit.

Fig. 3.
Fig. 3.

(a) Far field distribution of the waveguide at 635 nm and (b) near field image of the waveguide mode at 635 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ω x = π W x and ω y = π W y .
Z Rx Z Ry = W y 2 W x 2 .
2 ω x = ω x [ 1 + ( λ X I o 2 π ω x 2 ) 2 ] 1 2
X I o 2 = 3 π λ ω x 2 .
I o 2 = I o exp ( Y I o 2 2 ω y 2 )
Y I o 2 = In 2 ω y .
X I o 2 = Y I o 2
W y W x = NA In 2 3 for W x > 3 W y ,
NA W x f .
W y W x = NA n In 2 3 for W x > 3 W y ,

Metrics