Abstract

This paper describes a new type of plasmonic sensor fabricated by imprint lithography using a soft, elastomeric mold. Angle-dependent, zero-order transmission experiments demonstrate the sensing potential of this device, which uses a two dimensional plasmonic crystal. Full angle-dependent mapping shows that the sensitivity to surface chemical binding events reaches maxima near regions of the plasmonic Brillouin zone where the dispersion curves of multiple surface plasmon polariton modes converge. This behavior, together with the simple, low cost procedures for building the structures, suggests a potentially important role for these devices in high performance chemical and biological sensing.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Polymeric waveguide Bragg grating filter using soft lithography

Askin Kocabas and Atilla Aydinli
Opt. Express 14(22) 10228-10232 (2006)

Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides

Cyrille Billaudeau, Stéphane Collin, Fabrice Pardo, Nathalie Bardou, and Jean-Luc Pelouard
Opt. Express 17(5) 3490-3499 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Diamond, ed., Principles of chemical and biological sensors, vol. 150 of Chemical analysis (Wiley, New York, 1998). “A Wiley-Interscience publication.”.
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
    [Crossref]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  4. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
    [Crossref]
  5. S. Chou, “Nanoimprint lithography and lithographically induced self-assembly,” MRS Bulletin 26(7), 512–518 (2001).
    [Crossref]
  6. J. A. Rogers, “Rubber Stamping for Plastic Electronics and Fiber Optics,” MRS Bulletin 26(7), 530–534 (2001).
    [Crossref]
  7. D. J. Resnick, S. V. Sreenivasan, and C. G. Willson, “Step & flash imprint lithography,” Materials Today 8(2), 34–42 (2005).
    [Crossref]
  8. B. D. Gates, “Nanofabrication with molds & stamps,” Materials Today 8(2), 44–49 (2005).
    [Crossref]
  9. J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Materials Today 8(2), 50–56 (2005).
    [Crossref]
  10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
    [Crossref]
  11. Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
    [Crossref]
  12. Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing,” J. Am. Chem. Soc. 124(26), 7654–7655 (2002).
    [Crossref] [PubMed]
  13. C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111(1), 321–335 (1989).
    [Crossref]
  14. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  15. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
    [Crossref] [PubMed]
  16. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
    [Crossref]
  17. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
    [Crossref]
  18. E. Devauxa and T. W. Ebbesen, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
    [Crossref]
  19. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107,401 (2004).
    [Crossref]
  20. F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
    [Crossref]
  21. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  23. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113,901 (2005).
    [Crossref]

2005 (4)

D. J. Resnick, S. V. Sreenivasan, and C. G. Willson, “Step & flash imprint lithography,” Materials Today 8(2), 34–42 (2005).
[Crossref]

B. D. Gates, “Nanofabrication with molds & stamps,” Materials Today 8(2), 44–49 (2005).
[Crossref]

J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Materials Today 8(2), 50–56 (2005).
[Crossref]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113,901 (2005).
[Crossref]

2004 (3)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107,401 (2004).
[Crossref]

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

2003 (2)

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

E. Devauxa and T. W. Ebbesen, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
[Crossref]

2002 (4)

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
[Crossref] [PubMed]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing,” J. Am. Chem. Soc. 124(26), 7654–7655 (2002).
[Crossref] [PubMed]

2001 (2)

S. Chou, “Nanoimprint lithography and lithographically induced self-assembly,” MRS Bulletin 26(7), 512–518 (2001).
[Crossref]

J. A. Rogers, “Rubber Stamping for Plastic Electronics and Fiber Optics,” MRS Bulletin 26(7), 530–534 (2001).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
[Crossref]

1998 (2)

W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

1989 (1)

C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111(1), 321–335 (1989).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ahn, Y. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

Altewischer, E.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
[Crossref] [PubMed]

Bain, C. D.

C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111(1), 321–335 (1989).
[Crossref]

Baldwin, K. W.

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing,” J. Am. Chem. Soc. 124(26), 7654–7655 (2002).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107,401 (2004).
[Crossref]

Bilhaut, L.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]

Chou, S.

S. Chou, “Nanoimprint lithography and lithographically induced self-assembly,” MRS Bulletin 26(7), 512–518 (2001).
[Crossref]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107,401 (2004).
[Crossref]

Devauxa, E.

E. Devauxa and T. W. Ebbesen, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
[Crossref]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107,401 (2004).
[Crossref]

Ebbesen, T.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107,401 (2004).
[Crossref]

Ebbesen, T. W.

E. Devauxa and T. W. Ebbesen, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Ebbesen, W.

W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Evall, J.

C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111(1), 321–335 (1989).
[Crossref]

Gates, B. D.

B. D. Gates, “Nanofabrication with molds & stamps,” Materials Today 8(2), 44–49 (2005).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
[Crossref]

Gaur, A.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Geil, P.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Hohng, S. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
[Crossref]

Hua, F.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]

Kim, D. S.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113,901 (2005).
[Crossref]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Kim, J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113,901 (2005).
[Crossref]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]

Lezec, H. J.

W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Lienau, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113,901 (2005).
[Crossref]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Loo, Y.-L.

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing,” J. Am. Chem. Soc. 124(26), 7654–7655 (2002).
[Crossref] [PubMed]

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

Malyarchuk, V.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Meitl, M. A.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Müller, R.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107,401 (2004).
[Crossref]

Nuzzo, R. G.

J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Materials Today 8(2), 50–56 (2005).
[Crossref]

C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111(1), 321–335 (1989).
[Crossref]

Park, D. J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113,901 (2005).
[Crossref]

Park, J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

Park, J. W.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Park, Q. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Resnick, D. J.

D. J. Resnick, S. V. Sreenivasan, and C. G. Willson, “Step & flash imprint lithography,” Materials Today 8(2), 34–42 (2005).
[Crossref]

Rogers, J. A.

J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Materials Today 8(2), 50–56 (2005).
[Crossref]

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing,” J. Am. Chem. Soc. 124(26), 7654–7655 (2002).
[Crossref] [PubMed]

J. A. Rogers, “Rubber Stamping for Plastic Electronics and Fiber Optics,” MRS Bulletin 26(7), 530–534 (2001).
[Crossref]

Ropers, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113,901 (2005).
[Crossref]

Rotkina, L.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Ryu, H. Y.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Shim, A.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Shim, M.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Sreenivasan, S. V.

D. J. Resnick, S. V. Sreenivasan, and C. G. Willson, “Step & flash imprint lithography,” Materials Today 8(2), 34–42 (2005).
[Crossref]

Steinmeyer, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113,901 (2005).
[Crossref]

Stibenz, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113,901 (2005).
[Crossref]

Sun, Y.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Tao, Y.-T.

C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111(1), 321–335 (1989).
[Crossref]

Thio, T.

W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Troughton, E. B.

C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111(1), 321–335 (1989).
[Crossref]

van Exter, M. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
[Crossref] [PubMed]

Wang, J.

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Whitesides, G. M.

C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111(1), 321–335 (1989).
[Crossref]

Willett, R. L.

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing,” J. Am. Chem. Soc. 124(26), 7654–7655 (2002).
[Crossref] [PubMed]

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

Willson, C. G.

D. J. Resnick, S. V. Sreenivasan, and C. G. Willson, “Step & flash imprint lithography,” Materials Today 8(2), 34–42 (2005).
[Crossref]

Woerdman, J. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
[Crossref] [PubMed]

Wolff, P. A.

W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Yee, K. J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
[Crossref]

Yoo, K. H.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Yoon, Y. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

Appl. Phys. Lett. (3)

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett. 81(3), 562–564 (2002).
[Crossref]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, “Light emission from the shadows: Surface plasmon nano-optics at near and far fields,” Appl. Phys. Lett. 81(17), 3239–3241 (2002).
[Crossref]

E. Devauxa and T. W. Ebbesen, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936–4938 (2003).
[Crossref]

J. Am. Chem. Soc. (2)

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Interfacial chemistries for nanoscale transfer printing,” J. Am. Chem. Soc. 124(26), 7654–7655 (2002).
[Crossref] [PubMed]

C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111(1), 321–335 (1989).
[Crossref]

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]

Materials Today (3)

D. J. Resnick, S. V. Sreenivasan, and C. G. Willson, “Step & flash imprint lithography,” Materials Today 8(2), 34–42 (2005).
[Crossref]

B. D. Gates, “Nanofabrication with molds & stamps,” Materials Today 8(2), 44–49 (2005).
[Crossref]

J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Materials Today 8(2), 50–56 (2005).
[Crossref]

MRS Bulletin (2)

S. Chou, “Nanoimprint lithography and lithographically induced self-assembly,” MRS Bulletin 26(7), 512–518 (2001).
[Crossref]

J. A. Rogers, “Rubber Stamping for Plastic Electronics and Fiber Optics,” MRS Bulletin 26(7), 530–534 (2001).
[Crossref]

Nano Lett. (1)

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, “Polymer imprint lithography with molecular-scale resolution,” Nano Lett. 4(12), 2467–2471 (2004).
[Crossref]

Nature (2)

W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002).
[Crossref] [PubMed]

Phys. Rev. B (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,” Phys. Rev. Lett. 94(11), 113,901 (2005).
[Crossref]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107,401 (2004).
[Crossref]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,” Phys. Rev. Lett. 91(14), 143,901 (2003).
[Crossref]

Science (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Sensors and Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B 54, 3–15 (1999).
[Crossref]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

D. Diamond, ed., Principles of chemical and biological sensors, vol. 150 of Chemical analysis (Wiley, New York, 1998). “A Wiley-Interscience publication.”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Plasmonic crystal fabrication process: (a) imprinting; (b) curing; (c) removing; and (d) gold deposition.

Fig. 2.
Fig. 2.

Two dimensional plasmonic crystal sensor: (a) low resolution image; (b) scanning electron micrograph (SEM); (c) high resolution SEM showing that walls of the depression are free from metal.

Fig. 3.
Fig. 3.

Experimental zero-order transmission setup.

Fig. 4.
Fig. 4.

Plasmonic Brillouin zones (a) before and (b) after the formation of a hexadecanethiol SAM.

Fig. 5.
Fig. 5.

Plasmonic crystal surface sensitivity: (a) sensitivity map; (b) absolute values of the sensitivity map.

Fig. 6.
Fig. 6.

Transmission spectra at chosen points: (a) 0° (G-point); (b) 22° in Γ-X region (maximum sensitivity at kx = 2.1μm); and (c) 14° in Γ-M region (maximum sensitivity at kx = -1.2μm). Insets show the magnified parts of the spectra in order to highlight the change due to the formation of a hexadecanethiol SAM.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Sensitivity = Transmission SAM Transmission initial
k spp = ω c ε d ε m ε d + ε m

Metrics