Abstract

This paper describes a new type of plasmonic sensor fabricated by imprint lithography using a soft, elastomeric mold. Angle-dependent, zero-order transmission experiments demonstrate the sensing potential of this device, which uses a two dimensional plasmonic crystal. Full angle-dependent mapping shows that the sensitivity to surface chemical binding events reaches maxima near regions of the plasmonic Brillouin zone where the dispersion curves of multiple surface plasmon polariton modes converge. This behavior, together with the simple, low cost procedures for building the structures, suggests a potentially important role for these devices in high performance chemical and biological sensing.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Diamond, ed., Principles of chemical and biological sensors, vol. 150 of Chemical analysis (Wiley, New York, 1998). �??A Wiley-Interscience publication.�??
  2. J. Homola, S. S. Yee, and G. Gauglitz, �??Surface plasmon resonance sensors: review,�?? Sensors and Actuators B 54, 3�??15 (1999).
    [CrossRef]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  4. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, �??Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,�?? Langmuir 20(12), 4813�??4815 (2004).
    [CrossRef]
  5. S. Chou, �??Nanoimprint lithography and lithographically induced self-assembly,�?? MRS Bulletin 26(7), 512�??518 (2001).
    [CrossRef]
  6. J. A. Rogers, �??Rubber Stamping for Plastic Electronics and Fiber Optics,�?? MRS Bulletin 26(7), 530�??534 (2001).
    [CrossRef]
  7. J. Resnick, S. V. Sreenivasan, and C. G. Willson, �??Step & flash imprint lithography,�?? Materials Today 8(2), 34�??42 (2005).
    [CrossRef]
  8. B. D. Gates, �??Nanofabrication with molds & stamps,�?? Materials Today 8(2), 44�??49 (2005).
    [CrossRef]
  9. J. A. Rogers and R. G. Nuzzo, �??Recent progress in soft lithography,�?? Materials Today 8(2), 50�??56 (2005).
    [CrossRef]
  10. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, �??Imprint lithography with 25-nanometer resolution,�?? Science 272, 85�??87 (1996).
    [CrossRef]
  11. Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, �??Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,�?? Appl. Phys. Lett. 81(3), 562�??564 (2002).
    [CrossRef]
  12. Y.-L. Loo, R. L.Willett, K.W. Baldwin, and J. A. Rogers, �??Interfacial chemistries for nanoscale transfer printing,�?? J. Am. Chem. Soc. 124(26), 7654�??7655 (2002).
    [CrossRef] [PubMed]
  13. C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, �??Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,�?? J. Am. Chem. Soc. 111(1), 321�??335 (1989).
    [CrossRef]
  14. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391(6668), 667�??669 (1998).
    [CrossRef]
  15. E. Altewischer, M. P. van Exter, and J. P. Woerdman, �??Plasmon-assisted transmission of entangled photons,�?? Nature 418, 304�??306 (2002).
    [CrossRef] [PubMed]
  16. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. M¨uller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, �??Light emission from the shadows: Surface plasmon nano-optics at near and far fields,�?? Appl. Phys. Lett. 81(17), 3239�??3241 (2002).
    [CrossRef]
  17. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, �??Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,�?? Phys. Rev. Lett. 91(14), 143,901 (2003).
    [CrossRef]
  18. E. Devauxa and T. W. Ebbesen, �??Launching and decoupling surface plasmons via micro-gratings,�?? Appl. Phys. Lett. 83(24), 4936�??4938 (2003).
    [CrossRef]
  19. W. L. Barnes,W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, �??Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,�?? Phys. Rev. Lett. 92(10), 107,401 (2004).
    [CrossRef]
  20. F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, �??Polymer imprint lithography with molecular-scale resolution,�?? Nano Lett. 4(12), 2467�??2471 (2004).
    [CrossRef]
  21. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, �??Surface plasmons enhance optical transmission through subwavelength holes,�?? Phys. Rev. B 58(11), 6779�??6782 (1998).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, �??Optical constants of the noble metals,�?? Phys. Rev. B 6(12), 4370�??4379 (1972).
    [CrossRef]
  23. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, �??Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,�?? Phys. Rev. Lett. 94(11), 113,901 (2005).
    [CrossRef]

Appl. Phys. Lett. (3)

Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, �??Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,�?? Appl. Phys. Lett. 81(3), 562�??564 (2002).
[CrossRef]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. M¨uller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, �??Light emission from the shadows: Surface plasmon nano-optics at near and far fields,�?? Appl. Phys. Lett. 81(17), 3239�??3241 (2002).
[CrossRef]

E. Devauxa and T. W. Ebbesen, �??Launching and decoupling surface plasmons via micro-gratings,�?? Appl. Phys. Lett. 83(24), 4936�??4938 (2003).
[CrossRef]

Chemical analysis (1)

D. Diamond, ed., Principles of chemical and biological sensors, vol. 150 of Chemical analysis (Wiley, New York, 1998). �??A Wiley-Interscience publication.�??

J. Am. Chem. Soc. (2)

Y.-L. Loo, R. L.Willett, K.W. Baldwin, and J. A. Rogers, �??Interfacial chemistries for nanoscale transfer printing,�?? J. Am. Chem. Soc. 124(26), 7654�??7655 (2002).
[CrossRef] [PubMed]

C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, �??Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,�?? J. Am. Chem. Soc. 111(1), 321�??335 (1989).
[CrossRef]

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, �??Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films,�?? Langmuir 20(12), 4813�??4815 (2004).
[CrossRef]

Materials Today (3)

J. Resnick, S. V. Sreenivasan, and C. G. Willson, �??Step & flash imprint lithography,�?? Materials Today 8(2), 34�??42 (2005).
[CrossRef]

B. D. Gates, �??Nanofabrication with molds & stamps,�?? Materials Today 8(2), 44�??49 (2005).
[CrossRef]

J. A. Rogers and R. G. Nuzzo, �??Recent progress in soft lithography,�?? Materials Today 8(2), 50�??56 (2005).
[CrossRef]

MRS Bulletin (2)

S. Chou, �??Nanoimprint lithography and lithographically induced self-assembly,�?? MRS Bulletin 26(7), 512�??518 (2001).
[CrossRef]

J. A. Rogers, �??Rubber Stamping for Plastic Electronics and Fiber Optics,�?? MRS Bulletin 26(7), 530�??534 (2001).
[CrossRef]

Nano Lett. (1)

F. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, �??Polymer imprint lithography with molecular-scale resolution,�?? Nano Lett. 4(12), 2467�??2471 (2004).
[CrossRef]

Nature (2)

W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391(6668), 667�??669 (1998).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, �??Plasmon-assisted transmission of entangled photons,�?? Nature 418, 304�??306 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, �??Surface plasmons enhance optical transmission through subwavelength holes,�?? Phys. Rev. B 58(11), 6779�??6782 (1998).
[CrossRef]

P. B. Johnson and R. W. Christy, �??Optical constants of the noble metals,�?? Phys. Rev. B 6(12), 4370�??4379 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, �??Femtosecond Light Transmission and Subradiant Damping in Plasmonic Crystals,�?? Phys. Rev. Lett. 94(11), 113,901 (2005).
[CrossRef]

W. L. Barnes,W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, �??Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,�?? Phys. Rev. Lett. 92(10), 107,401 (2004).
[CrossRef]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. Park, J. Kim, Q. H. Park, and C. Lienau, �??Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures,�?? Phys. Rev. Lett. 91(14), 143,901 (2003).
[CrossRef]

Science (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, �??Imprint lithography with 25-nanometer resolution,�?? Science 272, 85�??87 (1996).
[CrossRef]

Sensors and Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, �??Surface plasmon resonance sensors: review,�?? Sensors and Actuators B 54, 3�??15 (1999).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Plasmonic crystal fabrication process: (a) imprinting; (b) curing; (c) removing; and (d) gold deposition.

Fig. 2.
Fig. 2.

Two dimensional plasmonic crystal sensor: (a) low resolution image; (b) scanning electron micrograph (SEM); (c) high resolution SEM showing that walls of the depression are free from metal.

Fig. 3.
Fig. 3.

Experimental zero-order transmission setup.

Fig. 4.
Fig. 4.

Plasmonic Brillouin zones (a) before and (b) after the formation of a hexadecanethiol SAM.

Fig. 5.
Fig. 5.

Plasmonic crystal surface sensitivity: (a) sensitivity map; (b) absolute values of the sensitivity map.

Fig. 6.
Fig. 6.

Transmission spectra at chosen points: (a) 0° (G-point); (b) 22° in Γ-X region (maximum sensitivity at kx = 2.1μm); and (c) 14° in Γ-M region (maximum sensitivity at kx = -1.2μm). Insets show the magnified parts of the spectra in order to highlight the change due to the formation of a hexadecanethiol SAM.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Sensitivity = Transmission SAM Transmission initial
k spp = ω c ε d ε m ε d + ε m

Metrics