Abstract

A train of highly-stable, high-beam-quality ultrashort pulses is successfully produced by synthesizing phase-coherent rotational-Raman-sidebands in parahydrogen. The intensity-waveform of this ultrashort-pulse-train is directly evaluated in time domain based on a sum-frequency-generation autocorrelation-technique. It is shown that a 10.6-THz ultrahigh-repetition-train of short pulses is formed with an effective-duration of 20 fs and a high peak-power of 2 MW.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. E. Harris and A. V. Sokolov, �?? Broadband spectral generation with refractive index control,�?? Phys. Rev. A 55, R4019-4022 (1997).
    [CrossRef]
  2. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, �??Raman generation by phased and antiphased molecular states,�?? Phys. Rev. Lett. 85, 562-565 (2000).
    [CrossRef] [PubMed]
  3. M. Katsuragawa, J. Q. Liang, J. Z. Li, M. Suzuki and K. Hakuta, �??Stimulated Raman Scattering in Solid Hydrogen based on Adiabatic Preparation of Anti-Phased State,�?? CLEO/QELS '99, Technical Digest, QthE2, pp.195-196, Baltimore, USA, May 23-28 (1999).
  4. J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, �??Sideband generation using strongly driven Raman coherence in solid hydrogen,�?? Phys. Rev. Lett. 85, 2474-2477 (2000).
    [CrossRef] [PubMed]
  5. M. Katsuragawa, J. Q. Liang, F. Le Kien, and K. Hakuta, �??Efficient frequency conversion of incoherent fluorescent light,�?? Phys. Rev. A. 65, 025801-025804 (2002).
    [CrossRef]
  6. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, �??Generation of a single-cycle optical pulse, �?? Phys. Rev. Lett. 94, 033904-033907 (2005).
    [CrossRef] [PubMed]
  7. M. Katsuragawa and T. Onose, �??A dual-wavelength injection-locked pulsed laser,�?? Opt. Lett., in print; Japan Patent 2004-56879.
  8. S. Yoshikawa and T. Imasaka, �??A new approach for the generation of ultrashort optical pulses,�?? Opt. Commun. 96, 94-98 (1993).
    [CrossRef]
  9. H. Kawano, Y. Hirakawa, and T. Imasaka, �??Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis,�?? Appl. Phys. B 65, 1-4 (1996).
    [CrossRef]
  10. D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, �?? Rotational Raman generation with near-unity conversion efficiency,�?? Opt. Lett. 27, 769-771 (2002).
    [CrossRef]
  11. D. D. Yavuz, D. R. Walker, M. Y. Shverdin, G. Y. Yin, and S. E. Harris, �?? Quasiperiodic Raman technique for ultrashort pulse generation,�?? Phys. Rev. Lett. 91, 233602-223605 (2003).
    [CrossRef] [PubMed]
  12. M. Katsuragawa Y. Ono, Fam Le Kien, and K. Hakuta, �??Comb generation of collinear Raman sidebands by three correlated coherent molecular oscillations,�?? CLEO/IQEC 2004, Technical Digest CMO6, San Francisco CA, USA, May. 23-27 (2004).
  13. M. Wittmann, A. Nazarkin, and G. Korn, �??fs-Pulse synthesis using phase modulation by impulsively excited molecular vibrations,�?? Phys. Rev. Lett. 84, 5508-5511 (2000).
    [CrossRef] [PubMed]
  14. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, �??Femtosecond light source for phase-controlled multiphoton ionization,�?? Phys. Rev. Lett. 87, 033402-033405 (2001).
    [CrossRef] [PubMed]
  15. The study regarding the optimization of adiabatic Raman processes will be reported in the future.
  16. I. Matsuda, K. Misawa, and R. Lang, �??Femtosecond chirp-variable apparatus using a chirped mirror pair for quantum coherent control,�?? Opt. Comm. 239, 181�??186 (2004).
    [CrossRef]
  17. There were no difficulties in maintaining this stability over several hours in the present experiment.

Appl. Phys. B

H. Kawano, Y. Hirakawa, and T. Imasaka, �??Generation of more than 40 rotational Raman lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis,�?? Appl. Phys. B 65, 1-4 (1996).
[CrossRef]

CLEO/IQEC 2004, Technical Digest CMO6

M. Katsuragawa Y. Ono, Fam Le Kien, and K. Hakuta, �??Comb generation of collinear Raman sidebands by three correlated coherent molecular oscillations,�?? CLEO/IQEC 2004, Technical Digest CMO6, San Francisco CA, USA, May. 23-27 (2004).

CLEO/QELS '99, Technical Digest, QthE2

M. Katsuragawa, J. Q. Liang, J. Z. Li, M. Suzuki and K. Hakuta, �??Stimulated Raman Scattering in Solid Hydrogen based on Adiabatic Preparation of Anti-Phased State,�?? CLEO/QELS '99, Technical Digest, QthE2, pp.195-196, Baltimore, USA, May 23-28 (1999).

Opt. Comm.

I. Matsuda, K. Misawa, and R. Lang, �??Femtosecond chirp-variable apparatus using a chirped mirror pair for quantum coherent control,�?? Opt. Comm. 239, 181�??186 (2004).
[CrossRef]

Opt. Commun.

S. Yoshikawa and T. Imasaka, �??A new approach for the generation of ultrashort optical pulses,�?? Opt. Commun. 96, 94-98 (1993).
[CrossRef]

Opt. Lett.

M. Katsuragawa and T. Onose, �??A dual-wavelength injection-locked pulsed laser,�?? Opt. Lett., in print; Japan Patent 2004-56879.

D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, �?? Rotational Raman generation with near-unity conversion efficiency,�?? Opt. Lett. 27, 769-771 (2002).
[CrossRef]

Phys. Rev. A

S. E. Harris and A. V. Sokolov, �?? Broadband spectral generation with refractive index control,�?? Phys. Rev. A 55, R4019-4022 (1997).
[CrossRef]

Phys. Rev. A.

M. Katsuragawa, J. Q. Liang, F. Le Kien, and K. Hakuta, �??Efficient frequency conversion of incoherent fluorescent light,�?? Phys. Rev. A. 65, 025801-025804 (2002).
[CrossRef]

Phys. Rev. Lett.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, �??Generation of a single-cycle optical pulse, �?? Phys. Rev. Lett. 94, 033904-033907 (2005).
[CrossRef] [PubMed]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, �??Raman generation by phased and antiphased molecular states,�?? Phys. Rev. Lett. 85, 562-565 (2000).
[CrossRef] [PubMed]

J. Q. Liang, M. Katsuragawa, F. Le Kien, and K. Hakuta, �??Sideband generation using strongly driven Raman coherence in solid hydrogen,�?? Phys. Rev. Lett. 85, 2474-2477 (2000).
[CrossRef] [PubMed]

D. D. Yavuz, D. R. Walker, M. Y. Shverdin, G. Y. Yin, and S. E. Harris, �?? Quasiperiodic Raman technique for ultrashort pulse generation,�?? Phys. Rev. Lett. 91, 233602-223605 (2003).
[CrossRef] [PubMed]

M. Wittmann, A. Nazarkin, and G. Korn, �??fs-Pulse synthesis using phase modulation by impulsively excited molecular vibrations,�?? Phys. Rev. Lett. 84, 5508-5511 (2000).
[CrossRef] [PubMed]

A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, �??Femtosecond light source for phase-controlled multiphoton ionization,�?? Phys. Rev. Lett. 87, 033402-033405 (2001).
[CrossRef] [PubMed]

Other

The study regarding the optimization of adiabatic Raman processes will be reported in the future.

There were no difficulties in maintaining this stability over several hours in the present experiment.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup. LN2-Cryostat: liquid-nitrogen-cryostat, SFG-Autocorrelator: sum-frequency-generation-autocorrelator, BBO: β-barium-borate crystal, SWP: shortwave-pass filter.

Fig. 2.
Fig. 2.

Transverse-mode patterns of a: the output beam after the collimating lens and b: the generated sidebands. c: The relative output energy of each generated sideband at the peak of the driving-fields. Ω0 and Ω-1 indicate the two driving-fields.

Fig. 3.
Fig. 3.

Autocorrelation traces at a: 9, b: 35, c: 37, d: 45 reflections on the chirp variable-device. The sharp noise peaks seen in the observed traces are artifacts.

Fig. 4.
Fig. 4.

The autocorrelation trace for 37 reflections. The green and blue curves show the best-fit to the observed trace and the corresponding temporal waveform, respectively.

Fig. 5.
Fig. 5.

(a) Observed temporal profiles of the generated rotational sidebands.; (b): Waveform (blue solid-curve) on a femto-scale at t = 0 calculated from the temporal profiles (a), and the corresponding autocorrelation trace (green dotted-curve). The green solid-curve shows the autocorrelation trace integrated over the nanosecond driving-pulse-envelope.

Metrics