Abstract

A novel and simple multi-wavelength linear-cavity tunable fiber laser source using a chirped fiber Bragg grating (CFBG) and a few-mode fiber Bragg grating (FMFG) is demonstrated using erbium-doped fiber (EDF) as the gain medium. In our linear-cavity configuration, the FMFG acts as full-reflecting mirror and wavelength selector while the CFBG with the 3-dB bandwidth of over 30 nm acts as a broadband partially reflecting mirror. The number of lasing wavelengths can be controlled by changing the state of polarization inside the cavity using a polarization controller. The large bandwidth of the CFBG enables continuous tuning of the lasing wavelengths by application of mechanical strain or thermal heating on the FMFG.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. X. Shu, S. Jiang, and D. Huang, "Fiber Grating Sagnac Loop and Its Multiwavelength Laser Application," IEEE Photonics Technol. Lett. 12, 980-982 (2000).
    [CrossRef]
  2. X. P. Dong, S. Li, K. S. Chiang, M. N. Ng, and B. C. B. Chu, "Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror," Electron. Lett. 36, 1609-1610 (2000).
    [CrossRef]
  3. J. M. Battiato, T. F. Morse, and R. K. Kostuk, "Dual-wavelength common-cavity codoped fiber laser," IEEE Photonics Technol. Lett. 9, 913-915 (1997).
    [CrossRef]
  4. S. Yamashita and K. Hotate, "Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen," Electron. Lett. 32, 1298-1299 (1996).
    [CrossRef]
  5. G. Das and J. W. Y. Lit, "L-band multiwavelength fiber laser using an elliptical fiber," IEEE Photonics Technol. Lett. 14, 606-608 (2002).
    [CrossRef]
  6. A. Bellemare, M. Karásek, M. Rochette, S. LaRochelle, and M. Têtu, "Room Temperature Multifrequency Erbium-Doped Fiber Lasers Anchored on the ITU Frequency Grid," J. Lightwave Technol. 18, 825-831 (2000).
    [CrossRef]
  7. J. Yang, K. Zhou, Y. Liu, S. C. Tjin, and N. Q. Ngo, "Multiwavelength Linear-Cavity Fiber Laser Source Using a Sagnac Interferemetric Filter and a Strain-Induced Chirped Fiber Grating," Fiber & Int. Opt. 22, 239-248 (2003).
  8. J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, "Active mode locking of tunable multi-wavelength fiber ring laser," Opt. Commun. 191, 341-345 (2001).
    [CrossRef]
  9. J. Yang, Y. Liu, and J. Yao, "Wideband true-time-delay system using fiber Bragg grating prism incorporated with a wavelength tunable fiber laser source," proceedings of IEEE, Microwave Photonics MWP2001, 125-128 (2001).
  10. V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, and J.-M. Delavaux, "Stable single-mode erbium fiber-grating laser for digital communication," J. Lightwave Technol. 11, 2021-2025 (1993).
    [CrossRef]
  11. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical model for rare-earth-doped fiber amplifiers and lasers," IEEE J. Quantum Electron. 30, 1817-1830 (1994).
    [CrossRef]
  12. Q. Mao and J. W. Y. Lit, "Switchable Multiwavelength Erbium-Doped Fiber Laser With Cascaded Fiber Grating Cavities," IEEE Photonics Technol. Lett. 14, 612-614 (2002).
    [CrossRef]
  13. J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, "Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber," IEEE Photonics Technol. Lett. 10, 941-943 (1998).
    [CrossRef]
  14. Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313-317 (2004).
    [CrossRef]
  15. D. Zhao, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, "Wavelength-switched optical pulse generation in a fiber ring laser with a Fabry-Perot semiconductor modulator and a sampled fiber Bragg grating," IEEE Photonics Technol. Lett. 13, 191-193 (2001).
    [CrossRef]
  16. X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable Dual-Wavelength Ytterbium-Doped Fiber Laser Based on a Few-Mode Fiber Grating," IEEE Photonics Technol. Lett. 16, 762-764 (2004).
    [CrossRef]
  17. D. S. Moon, U. C. Paek, and Y. Chung, "Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating," Opt. Express 12, 6147-6152 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6147">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6147</a>
    [CrossRef] [PubMed]
  18. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, "Bragg Gratings in Multimode and Few-Mode Optical Fibers," J. Lightwave Technol. 18, 230-235 (2000).
    [CrossRef]
  19. K. H. Wanser, K. F.Voss, and A. D. Kersey, "Novel fiber devices and sensors based on multimode fiber Bragg gratings," Proc. SPIE 2360, 265-268 (1994).
    [CrossRef]
  20. J. Yang, S. C. Tjin, and N. Q. Ngo, "Wideband tunable linear-cavity fiber laser source using strain-induced chirped fiber Bragg grating," Opt. & Laser Technol. 36, 561-565 (2004).
    [CrossRef]
  21. J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. T. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
    [CrossRef]
  22. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, "Enhanced UV photosensitivity in boron codoped germanosilicate fibres," Electron. Lett. 29, 45-47(1993).
    [CrossRef]
  23. K. O. Hill, B. Malo, F. Bilodeau, and D. C. Johnson, "Photosensitivity in optical fibers," Annu. Rev. Mater. Sci. 23, 125-157 (1993).
    [CrossRef]
  24. H. G. Yu, Y. Wang, C. Q. Xu, and A. D. Vandermeer, "Oscillation wavelength selection of semiconductor lasers using a multimode fiber Bragg grating," Opt. Express 13, 1660-1665 (2005), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1660.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1660 </a>
    [CrossRef] [PubMed]
  25. L. Su, C. Lu, J. Hao, Z. Li, and Y. Wang, "Design of Wavelength-Switching Erbium-Doped Fiber Lasers With a Multimode Fiber Bragg Grating Using Spatial-Mode Excitation and Selection Techniques," IEEE Photonics Technol. Lett. 17, 315-317 (2005).
    [CrossRef]
  26. Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings," Opt. Express 12, 2056-2061(2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2056">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2056</a>
    [CrossRef] [PubMed]
  27. D. Zhao, X. Shu, W. Zhang, Y. Lai, L. Zhang, and I. Bennion, "Stable Dual-Wavelength Oscillation of an Er-Doped Fiber Ring Laser at Room Temperature," Fiber & Int. Opt. 21, 465-470 (2002).
    [CrossRef]
  28. X. Feng, Y. Liu, S. Yuan, G. Kai, W. Zhang, and X. Dong, "L-Band switchable dual-wavelength erbium-doped fiber laser based on a multimode fiber Bragg grating," Opt. Express 12, 3834-3839 (2004), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3834">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3834</a>
    [CrossRef] [PubMed]

Annu. Rev. Mater. Sci. (1)

K. O. Hill, B. Malo, F. Bilodeau, and D. C. Johnson, "Photosensitivity in optical fibers," Annu. Rev. Mater. Sci. 23, 125-157 (1993).
[CrossRef]

Electron. Lett. (3)

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, "Enhanced UV photosensitivity in boron codoped germanosilicate fibres," Electron. Lett. 29, 45-47(1993).
[CrossRef]

X. P. Dong, S. Li, K. S. Chiang, M. N. Ng, and B. C. B. Chu, "Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror," Electron. Lett. 36, 1609-1610 (2000).
[CrossRef]

S. Yamashita and K. Hotate, "Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen," Electron. Lett. 32, 1298-1299 (1996).
[CrossRef]

Fiber & Int. Opt. (2)

J. Yang, K. Zhou, Y. Liu, S. C. Tjin, and N. Q. Ngo, "Multiwavelength Linear-Cavity Fiber Laser Source Using a Sagnac Interferemetric Filter and a Strain-Induced Chirped Fiber Grating," Fiber & Int. Opt. 22, 239-248 (2003).

D. Zhao, X. Shu, W. Zhang, Y. Lai, L. Zhang, and I. Bennion, "Stable Dual-Wavelength Oscillation of an Er-Doped Fiber Ring Laser at Room Temperature," Fiber & Int. Opt. 21, 465-470 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical model for rare-earth-doped fiber amplifiers and lasers," IEEE J. Quantum Electron. 30, 1817-1830 (1994).
[CrossRef]

IEEE Photonics Technol. Lett. (7)

Q. Mao and J. W. Y. Lit, "Switchable Multiwavelength Erbium-Doped Fiber Laser With Cascaded Fiber Grating Cavities," IEEE Photonics Technol. Lett. 14, 612-614 (2002).
[CrossRef]

J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, "Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber," IEEE Photonics Technol. Lett. 10, 941-943 (1998).
[CrossRef]

D. Zhao, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, "Wavelength-switched optical pulse generation in a fiber ring laser with a Fabry-Perot semiconductor modulator and a sampled fiber Bragg grating," IEEE Photonics Technol. Lett. 13, 191-193 (2001).
[CrossRef]

X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, "Switchable Dual-Wavelength Ytterbium-Doped Fiber Laser Based on a Few-Mode Fiber Grating," IEEE Photonics Technol. Lett. 16, 762-764 (2004).
[CrossRef]

G. Das and J. W. Y. Lit, "L-band multiwavelength fiber laser using an elliptical fiber," IEEE Photonics Technol. Lett. 14, 606-608 (2002).
[CrossRef]

J. M. Battiato, T. F. Morse, and R. K. Kostuk, "Dual-wavelength common-cavity codoped fiber laser," IEEE Photonics Technol. Lett. 9, 913-915 (1997).
[CrossRef]

L. Su, C. Lu, J. Hao, Z. Li, and Y. Wang, "Design of Wavelength-Switching Erbium-Doped Fiber Lasers With a Multimode Fiber Bragg Grating Using Spatial-Mode Excitation and Selection Techniques," IEEE Photonics Technol. Lett. 17, 315-317 (2005).
[CrossRef]

IEEE Phtonics Technol. Lett. (1)

X. Shu, S. Jiang, and D. Huang, "Fiber Grating Sagnac Loop and Its Multiwavelength Laser Application," IEEE Photonics Technol. Lett. 12, 980-982 (2000).
[CrossRef]

IEEE, Microwave Photonics (1)

J. Yang, Y. Liu, and J. Yao, "Wideband true-time-delay system using fiber Bragg grating prism incorporated with a wavelength tunable fiber laser source," proceedings of IEEE, Microwave Photonics MWP2001, 125-128 (2001).

J. Lightwave Technol. (3)

Opt. & Laser Technol. (1)

J. Yang, S. C. Tjin, and N. Q. Ngo, "Wideband tunable linear-cavity fiber laser source using strain-induced chirped fiber Bragg grating," Opt. & Laser Technol. 36, 561-565 (2004).
[CrossRef]

Opt. Commun. (3)

J. Mandal, Y. Shen, S. Pal, T. Sun, K. T. V. Grattan, and A. T. Augousti, "Bragg grating tuned fiber laser system for measurement of wider range temperature and strain," Opt. Commun. 244, 111-121 (2005).
[CrossRef]

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313-317 (2004).
[CrossRef]

J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, "Active mode locking of tunable multi-wavelength fiber ring laser," Opt. Commun. 191, 341-345 (2001).
[CrossRef]

Opt. Express (4)

Proc. SPIE (1)

K. H. Wanser, K. F.Voss, and A. D. Kersey, "Novel fiber devices and sensors based on multimode fiber Bragg gratings," Proc. SPIE 2360, 265-268 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Reflection spectrum of the chirped fiber Bragg grating.

Fig. 2.
Fig. 2.

The schematic of multi-wavelength linear-cavity fiber laser.

Fig. 3.
Fig. 3.

Simultaneous triple-wavelength oscillation of the proposed linear-cavity fiber laser.

Fig. 4.
Fig. 4.

Output spectra of linear-cavity fiber laser with different state of polarization.(a) single-wavelength oscillation, (b) dual-wavelength oscillation.

Fig. 5.
Fig. 5.

Repeatedly scanned output spectra of the dual-wavelength oscillation.

Fig. 6.
Fig. 6.

Output spectra of the single-wavelength oscillation with different strain range from 0 με to 1050 με.

Fig. 7.
Fig. 7.

Output spectra of the dual-wavelength oscillation with different temperature settings of 30°C to 200°C at the FMFG. The PC was adjusted to obtain the same output power level for both temperatures.

Fig. 8.
Fig. 8.

The shift of resonance wavelength versus temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ 1 [ nm ] = 1546.72795 + 0.01079 T [ °C ]
λ 2 [ nm ] = 1549.94838 + 0.01055 T [ °C ]

Metrics