Abstract

An inherent problem to the study of waveguides with strong propagation losses by Scattering–type Scanning Near field Optical Microscopy is the coherent optical background field which disrupts strongly the weak detected near-field signal. We present a technique of heterodyne detection allowing us to overcome this difficulty while amplifying the near field signal. As illustrated in the case of highly confined Silicon on Isolator (SOI) structure, this technique, besides the amplitude, provides the local phase variation of the guided field. The knowledge of the complex field cartography leads to the modal analysis of the propagating radiation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F Martin and D.W. Pohl, �??Scanning near-field microscopy with aperture probes: Fundamentals and applications,�?? J. of Chem. Phys. 112, 7761-7774 (2000).
    [CrossRef]
  2. S. Bourzeix, J.M. Moisson, F. Mignard, F. Barthe, A.C. Boccara, C. Licoppe, B. Mersali, M. Allovon, ans A. Bruno, �??Near-field optical imaging of light propagation in semiconductor waveguide structures,�?? Appl. Phys. Lett. 73, 1035-1037 (1998).
    [CrossRef]
  3. M.L.M. Balistreri, D.J.W. Klunder, F.C. Blom, A. Driessen, H.W.J.M. Hoekstra, J.P. Korterik, L. Kuipers, and N.F. van Hulst �?? Visualizing the whispering gallery modes in a cylindrical optical microcavity,�?? Optics Letters 24, 1829-1831 (1999).
    [CrossRef]
  4. M.L.M Balistreri, J.P. Korterik, L. Kuipers, and N.F. van Hulst, N.F. �??Visualization of mode transformation in a planar waveguide splitter by near-field optical phase imaging,�?? Appl. Phys. Lett. 79, 910-912 (2001).
    [CrossRef]
  5. A.L. Campillo, J.W.P. Hsu, C.A. White, and C.D.W. Jones, �??Direct measurement of the guided modes in LiNbO3 waveguides,�?? Appl. Phys. Lett. 80, 2239-2241 (2002).
    [CrossRef]
  6. M.L.M. Balistreri, H. Gersen, J.P. Korterik, L. Kuipers and N.F. van Hulst, �??Tracking femtosecond laser pulses in space and time,�?? Science 294, 1080�??1082 (2001).
    [CrossRef] [PubMed]
  7. H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, �??Tracking ultrashort pulses through dispersive media: Experiment and theory,�?? Phys. Rev. E 68, 026604 (2003).
    [CrossRef]
  8. R. Bachelot, P. Gleyzes and A.C. Boccara, �??Near-field optical microscope based on local perturbation of a diffraction spot,�?? Opt. Lett. 20, 1924�??1926 (1995).
    [CrossRef] [PubMed]
  9. Y. Inouye and S. Kawata, �??Near-field scanning optical microscope with a metallic probe tip,�?? Opt. Lett. 19, 159 -161 (1994).
    [CrossRef] [PubMed]
  10. F. Zenhaursen, M.P. O�??Boyle, and H.K. Wickramasinghe, Phys. Lett. 65, 1623 (1994).
  11. S. Blaize S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin and V. Minier, �??Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,�?? Journal of Microscopy 209, 155�??161 (2003).
    [CrossRef] [PubMed]
  12. R. Bachelot, G. Lerondel, S. Blaize, S. Aubert, A. Bruyant, and P. Royer, �??Probing photonic and optoelectronic structures by apertureless scanning near-field optical microscopy,�?? Microscopy Research and Technique 64, 441�??452 (2004).
    [CrossRef] [PubMed]
  13. R. S. Taylor, K.E. Leopold, M. Wendman, G. Gurley, and V. Elings, �??Scanning probe optical microscopy of evanescent fields,�??�?? 69, 2981�??2987 (1998).
    [CrossRef]
  14. S. Aubert, A. Bruyant S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, �??Analysis of the interferometric effect of the background light in apertureless scanning near-.eld optical microscopy,�?? J. Opt. Soc. Am. B 20, 2117�??2124 (2003).
    [CrossRef]
  15. G. Wurtz, R. Bachelot and P. Royer, �??Imaging a GaAlAs laserdiode in operation using apertureless scanning near-field optical microscopy,�?? Eur. Phys. J.: Appl. Phys. 5, 269�??275 (1999).
    [CrossRef]
  16. R. Hillenbrand, B. Knoll, and F. Keilmann, �??Pure optical contrast in scattering-type scanning near-field microscopy,�?? J. Microsc. (Oxford) 202, 77�??83 (2000).
    [CrossRef]
  17. R. Hillenbrand, T. Taubner, and F. Keilmann, �??Phonon enhanced light matter interaction at the nanometer scale,�?? Nature 418, 159�??162 (2002).
    [CrossRef] [PubMed]
  18. E.J. Sanchez, L. Novotny, and. X.S. Xie, �??Near-field fluorescence microscopy based on two-photon excitation with metal tips,�?? Phys. Rev. Lett. 82, 4014�??4017 (1999).
    [CrossRef]
  19. J.-E. Broquin, �??Ion Exchange integrated devices,�?? in Integrated Optics Devices V, Giancarlo and C. Righini, eds., Proc. SPIE, 4277, 105-115 (2001).
  20. A. Nesci, R. Dandliker, H.P. Herzig , �??Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope,�?? Opt. Lett. 26, 208�??210 (2001).
    [CrossRef]
  21. A. Bruyant, I. Stefanon, G. Lerondel, S. Blaize, S. Aubert, R. Bachelot, P. Royer, P. Pirasteh, J. Charrier, and P. Joubert, "Light propagation in porous silicon waveguide: an optical modes analysis in near field,�?? phys. stat. sol. (a) 202, No. 8, 1417�??1421 (2005)
    [CrossRef]

Appl. Phys. Lett. (3)

S. Bourzeix, J.M. Moisson, F. Mignard, F. Barthe, A.C. Boccara, C. Licoppe, B. Mersali, M. Allovon, ans A. Bruno, �??Near-field optical imaging of light propagation in semiconductor waveguide structures,�?? Appl. Phys. Lett. 73, 1035-1037 (1998).
[CrossRef]

M.L.M Balistreri, J.P. Korterik, L. Kuipers, and N.F. van Hulst, N.F. �??Visualization of mode transformation in a planar waveguide splitter by near-field optical phase imaging,�?? Appl. Phys. Lett. 79, 910-912 (2001).
[CrossRef]

A.L. Campillo, J.W.P. Hsu, C.A. White, and C.D.W. Jones, �??Direct measurement of the guided modes in LiNbO3 waveguides,�?? Appl. Phys. Lett. 80, 2239-2241 (2002).
[CrossRef]

Eur. Phys. J.: Appl. Phys. (1)

G. Wurtz, R. Bachelot and P. Royer, �??Imaging a GaAlAs laserdiode in operation using apertureless scanning near-field optical microscopy,�?? Eur. Phys. J.: Appl. Phys. 5, 269�??275 (1999).
[CrossRef]

J. Chem. Phys. (1)

B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F Martin and D.W. Pohl, �??Scanning near-field microscopy with aperture probes: Fundamentals and applications,�?? J. of Chem. Phys. 112, 7761-7774 (2000).
[CrossRef]

J. Microsc. (1)

R. Hillenbrand, B. Knoll, and F. Keilmann, �??Pure optical contrast in scattering-type scanning near-field microscopy,�?? J. Microsc. (Oxford) 202, 77�??83 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Journal of Microscopy (1)

S. Blaize S. Aubert, A. Bruyant, R. Bachelot, G. Lerondel, P. Royer, J.-E. Broquin and V. Minier, �??Apertureless scanning near-field optical microscopy for ion exchanged channel waveguide characterization,�?? Journal of Microscopy 209, 155�??161 (2003).
[CrossRef] [PubMed]

Microscopy Research and Technique (1)

R. Bachelot, G. Lerondel, S. Blaize, S. Aubert, A. Bruyant, and P. Royer, �??Probing photonic and optoelectronic structures by apertureless scanning near-field optical microscopy,�?? Microscopy Research and Technique 64, 441�??452 (2004).
[CrossRef] [PubMed]

Nature (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, �??Phonon enhanced light matter interaction at the nanometer scale,�?? Nature 418, 159�??162 (2002).
[CrossRef] [PubMed]

Opt. Lett. (3)

Optics Letters (1)

M.L.M. Balistreri, D.J.W. Klunder, F.C. Blom, A. Driessen, H.W.J.M. Hoekstra, J.P. Korterik, L. Kuipers, and N.F. van Hulst �?? Visualizing the whispering gallery modes in a cylindrical optical microcavity,�?? Optics Letters 24, 1829-1831 (1999).
[CrossRef]

Phys. Lett. (1)

F. Zenhaursen, M.P. O�??Boyle, and H.K. Wickramasinghe, Phys. Lett. 65, 1623 (1994).

Phys. Rev. E (1)

H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, �??Tracking ultrashort pulses through dispersive media: Experiment and theory,�?? Phys. Rev. E 68, 026604 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

E.J. Sanchez, L. Novotny, and. X.S. Xie, �??Near-field fluorescence microscopy based on two-photon excitation with metal tips,�?? Phys. Rev. Lett. 82, 4014�??4017 (1999).
[CrossRef]

Phys. Stat. Sol. (A) (1)

A. Bruyant, I. Stefanon, G. Lerondel, S. Blaize, S. Aubert, R. Bachelot, P. Royer, P. Pirasteh, J. Charrier, and P. Joubert, "Light propagation in porous silicon waveguide: an optical modes analysis in near field,�?? phys. stat. sol. (a) 202, No. 8, 1417�??1421 (2005)
[CrossRef]

Proc SPIE (1)

J.-E. Broquin, �??Ion Exchange integrated devices,�?? in Integrated Optics Devices V, Giancarlo and C. Righini, eds., Proc. SPIE, 4277, 105-115 (2001).

Rev. Sci. Instrum. (1)

R. S. Taylor, K.E. Leopold, M. Wendman, G. Gurley, and V. Elings, �??Scanning probe optical microscopy of evanescent fields,�??�?? 69, 2981�??2987 (1998).
[CrossRef]

Science (1)

M.L.M. Balistreri, H. Gersen, J.P. Korterik, L. Kuipers and N.F. van Hulst, �??Tracking femtosecond laser pulses in space and time,�?? Science 294, 1080�??1082 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

s-SNOM detection scheme. The external detection involves the collection of the scattering field from the tip and a background field provided by various scattering centers such as dusts or defects.

Fig. 2.
Fig. 2.

Experimental setup. The s-SNOM is a combination of an Atomic Force Microscope (AFM) with a confocal optical microscope. The complex amplitude of the guided field is obtained by incorporating the s-SNOM into one arm of an heterodyne mach-zehnder interferometer (see text for details).

Fig. 3.
Fig. 3.

s-SNOM signal demodulated at vertical probe oscillation frequency. The studied sample is an ion exchanged integrated waveguide. (A) Scheme of s-SNOM detection. β is the guided wave vector, kd corresponds to the average wave vector of both collected fields EBg and Ep towards the microscope objective. (B) s-SNOM raw optical image. Tilted fringes appear due to a coherent adding between the field scattered by the probe and a background field scattered in the direction of detection.

Fig. 4.
Fig. 4.

s-SNOM raw data recorded over the same ion exchanged waveguide; the wavelength of illumination was set to 1.55µm. (A) AFM topography, (B) (C) (D) demodulated optical amplitudes, (E) demodulated optical phase corresponding to amplitude image (D).

Fig. 5.
Fig. 5.

Scheme of the MMI waveguide splitter. (A) design of the mask. (B) SEM picture of the input waveguide cross-section.

Fig. 6.
Fig. 6.

Complex optical near-field mapping of the MMI splitter with the heterodyne s-SNOM. Raw data from lock-in amplitude and phase outputs at frequency Δω-ω 0.

Fig. 7.
Fig. 7.

(A) and (B), 2D Fast Fourier Transform of the complex optical field (raw data from Figure 6). (C) and (D), respectively filtered amplitude and phase of the guided field after radiation modes subtraction on the 2D FFT spectrum. (see text for details).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

z ( t ) = z 0 + A cos ( ω 0 t )
z ( t ) = A + A cos ( ω 0 t )
E p ( t ) = E p e j ( ω t + φ p ) e j γ z ( t ) u p
E tot = E p + E Bg + E ref
I ( t ) = E Bg + E ref + E p 2
I ( t ) = I hom ( t ) + I het ( t )
I hom ( t ) = E Bg 2 + E p 2 e 2 γ A I 0 ( 2 γ A ) + 2 E p E Bg u p · u Bg e γ A cos ( φ p φ Bg ) I 0 ( γ A )
+ E p 2 e 2 γ A n * I n ( 2 γ A ) cos ( n ω 0 t ) + 2 E p E Bg u p · u Bg e γ A cos ( φ p φ Bg ) n * I n ( γ A ) cos ( n ω 0 t )
I het ( t ) = E ref 2
+ 2 E ref E Bg u ref · u Bg cos ( Δ ω t + φ Bg φ ref )
+ 2 E p E ref u p · u ref e γ A I 0 ( γ A ) cos ( Δ ω t + φ p φ ref )
+ 2 E p E ref u p · u ref e γ A n * I n ( γ A ) cos ( ( Δ ω + n ω 0 ) t + φ p φ ref )
R n ω 0 ( r scan ) = E p 2 e 2 γ A I n ( 2 A γ ) + 2 E p E Bg u p · u Bg e γ A cos ( φ p φ Bg ) I n ( γ A )
φ p φ Bg = ( β k d ) r scan
2 E ref E Bg u ref · u Bg cos ( Δ ω t + φ Bg φ ref ) + 2 E p E ref u p · u ref e γ A I 0 ( γ A ) cos ( Δ ω t + φ p φ ref )
= R Δ ω cos ( Δ ω t + ϕ Δ ω )
2 E p E ref u p · u ref e γ A I 0 ( γ A ) cos ( Δ ω t + φ p φ ref ) = R Δ ω cos ( Δ ω t + ϕ Δ ω )
2 E p E ref u p · u ref e γ A n = * I n ( γ A ) cos ( ( Δ ω + n ω 0 ) t + φ p φ ref )
{ R Δ ω + n ω 0 ( r scan ) E P E ref e γ A ϕ Δ ω + Δ ω 0 ( r scan ) = ϕ P + cte n *

Metrics