Abstract

This paper presents an all-optical, in-band optical signal-to-noise ratio (OSNR) and chromatic dispersion monitor. We demonstrate monitoring over the 1 nm bandwidth of our signal, which is a 10 GHz pulse train of 8.8 ps pulses. The monitor output power, as measured on a slow detector, has a 1.9 dB dynamic range when the signal OSNR is varied by 20 dB, and a 1.6 dB dynamic range when ±150 ps/nm of chromatic dispersion is applied. Cascaded four-wave mixing occurring in the optical parametric amplifier provides the nonlinear power transfer function responsible for the monitoring. An analysis using the signals’ probability density functions show that the nonlinear power transfer function provides preferential gain to clean undispersed pulses when compared to noisy and/or dispersed pulses. Our analysis includes a consideration of the applicability of the device to high duty cycle systems, and simulations on monitoring of a 40 Gb/s pulse train with a 50% duty cycle.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S.Wielandy, P. S.Westbrook, M. Fishteyn, P. Reyes,W. Schairer, H. Rohde, and G. Lehmann, �??Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,�?? Electron. Lett. 40(11), 690�??691 (2004).
    [CrossRef]
  2. P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, �??Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,�?? IEEE Photon. Technol. Lett. 14(3), 346�??348 (2002).
    [CrossRef]
  3. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landosi, L. Ostar, M. Preiss, and A. E. Willner, �??Optical performance monitoring,�?? J. Lightwave Technol. 22(3), 294�??304 (2004).
    [CrossRef]
  4. S.Wielandy, M. Fishteyn, and B. Zhu, �??Optical performance monitoring using nonlinear detection,�?? J. Lightwave Technol. 22(3), 784�??793 (2004).
    [CrossRef]
  5. T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, �??Cascaded four-wave mixing in fibre optical parametric amplifiers: Application to residual dispersion monitoring,�?? J. Lightwave Technol. 23(2), 818�??826 (2005).
    [CrossRef]
  6. T. T. Ng, J. L. Blows, J. T. Mok, J. A. Bolger, P. Hambley, and B. J. Eggleton, �??Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,�?? Opt. Express 11(23), 3122�??3127 (2003).
    [CrossRef]
  7. C. Madsen, J.Wagener, T. Strasser, D. Muehlner, M. Milbrodt, E. Laskowski, and J. Demarco, �??Planar waveguide optical spectrum analyzer using a UV-induced grating,�?? IEEE J. Select. Top. Quantum Electron. 4(6), 925�??929 (1998).
    [CrossRef]
  8. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelson, �??Integrated tunable fibre gratings for dispersion management in high-bit rate systems.�?? J. Lightwave Technol. 18(10), 1418�??1432 (2000).
  9. C. Youn, K. Park, J. Lee, and Y. Chung, �??OSNR monitoring technique based on orthogonal delayed homodyne method�?? IEEE Photon. Tech. Lett. 14(10) 1469-1471 (2002)
    [CrossRef]
  10. Q. Yu, Z. Pan, L. Yan, and A. Willner, �??Chromatic dispersion monitoring technique using sideband optical filtering and clock phase-shift detection,�?? J. Lightwave Technol. 20(12), 2267�??2271 (2002).
  11. M. N. Petersen, Z. Pan, S. Lee, and S. A. Havstad �??Online chromatic dispersion monitoring and compensation using a single inband subcarrier tone,�?? IEEE Photon. Technol. Lett. 14(4), 570�??572 (2002).
    [CrossRef]
  12. P. Vorreau, D. Kilper, and J.Leuthold, �??Optical noise and dispersion monitoring with SOA-based optical 2R regenerator,�?? IEEE Photon. Technol. Lett. 17(1), 244�??246 (2005).
    [CrossRef]
  13. J. Lee, D. Jung, and Y. Chung, �??OSNR monitoring technique using polarisation-nulling method,�?? IEEE Photon. Technol. Lett. 13(1), 88�??90 (2001).
    [CrossRef]
  14. Y. Shi, M. Chen, N. Ma, and S. Xie, �??Chromatic dispersion monitoring technique employing SOA spectral shift in 40 Gbit/s system,�?? Opt. Comm. 229(1-3), 79�??84 (2005).
    [CrossRef]
  15. S.-D. Yang, Z. Jiang, and A. M. Weiner, �??Extremely low-power intensity autocorrelation and chromatic dispersion monitoring for 10-GHz, 3-ps optical pulses by aperiodically poled lithium niobate (A-PPLN) waveguide,�?? JWA35 (OFC, 2005).
  16. T. T. Ng, J. L. Blows, and B. J. Eggleton, �??In-band OSNR monitoring using fibre optical parametric amplifier,�?? Electron. Lett. 41(6), 352�??353 (2005).
    [CrossRef]
  17. J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P. Hedekvist, �??Fiber-based optical parametric amplifiers and their applications,�?? IEEE J. Select. Top. Quantum Electron. 8(3), 506�??520 (2002).
    [CrossRef]
  18. J. Hansryd and P. Andrekson, �??Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,�?? IEEE Photon. Technol. Lett. 13(3), 194�??196 (2001).
    [CrossRef]
  19. P. Z. Peebles, Jr., Probability, random variables and random signal principles (McGraw Hill, New York, 2001).
  20. D. C. Kilper and W. Weingartner, �??Monitoring optical network performance degredation due to amplifier noise,�?? J. Lightwave Technol. 21(5), 1171�??1178 (2003).
    [CrossRef]

Electron Lett. (1)

T. T. Ng, J. L. Blows, and B. J. Eggleton, �??In-band OSNR monitoring using fibre optical parametric amplifier,�?? Electron. Lett. 41(6), 352�??353 (2005).
[CrossRef]

Electron. Lett. (1)

S.Wielandy, P. S.Westbrook, M. Fishteyn, P. Reyes,W. Schairer, H. Rohde, and G. Lehmann, �??Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre,�?? Electron. Lett. 40(11), 690�??691 (2004).
[CrossRef]

IEEE J. Select. Top. Quantum Electron. (2)

C. Madsen, J.Wagener, T. Strasser, D. Muehlner, M. Milbrodt, E. Laskowski, and J. Demarco, �??Planar waveguide optical spectrum analyzer using a UV-induced grating,�?? IEEE J. Select. Top. Quantum Electron. 4(6), 925�??929 (1998).
[CrossRef]

J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P. Hedekvist, �??Fiber-based optical parametric amplifiers and their applications,�?? IEEE J. Select. Top. Quantum Electron. 8(3), 506�??520 (2002).
[CrossRef]

IEEE Photon. Tech. Lett. (2)

J. Hansryd and P. Andrekson, �??Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency,�?? IEEE Photon. Technol. Lett. 13(3), 194�??196 (2001).
[CrossRef]

C. Youn, K. Park, J. Lee, and Y. Chung, �??OSNR monitoring technique based on orthogonal delayed homodyne method�?? IEEE Photon. Tech. Lett. 14(10) 1469-1471 (2002)
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. N. Petersen, Z. Pan, S. Lee, and S. A. Havstad �??Online chromatic dispersion monitoring and compensation using a single inband subcarrier tone,�?? IEEE Photon. Technol. Lett. 14(4), 570�??572 (2002).
[CrossRef]

P. Vorreau, D. Kilper, and J.Leuthold, �??Optical noise and dispersion monitoring with SOA-based optical 2R regenerator,�?? IEEE Photon. Technol. Lett. 17(1), 244�??246 (2005).
[CrossRef]

J. Lee, D. Jung, and Y. Chung, �??OSNR monitoring technique using polarisation-nulling method,�?? IEEE Photon. Technol. Lett. 13(1), 88�??90 (2001).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, �??Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,�?? IEEE Photon. Technol. Lett. 14(3), 346�??348 (2002).
[CrossRef]

J. Lgihtwave Technol. (1)

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, �??Cascaded four-wave mixing in fibre optical parametric amplifiers: Application to residual dispersion monitoring,�?? J. Lightwave Technol. 23(2), 818�??826 (2005).
[CrossRef]

J. Lightwave Technol. (4)

J. Lightwave Techonol. (1)

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelson, �??Integrated tunable fibre gratings for dispersion management in high-bit rate systems.�?? J. Lightwave Technol. 18(10), 1418�??1432 (2000).

OFC (1)

S.-D. Yang, Z. Jiang, and A. M. Weiner, �??Extremely low-power intensity autocorrelation and chromatic dispersion monitoring for 10-GHz, 3-ps optical pulses by aperiodically poled lithium niobate (A-PPLN) waveguide,�?? JWA35 (OFC, 2005).

Opt. Comm. (1)

Y. Shi, M. Chen, N. Ma, and S. Xie, �??Chromatic dispersion monitoring technique employing SOA spectral shift in 40 Gbit/s system,�?? Opt. Comm. 229(1-3), 79�??84 (2005).
[CrossRef]

Optics Express (1)

T. T. Ng, J. L. Blows, J. T. Mok, J. A. Bolger, P. Hambley, and B. J. Eggleton, �??Simultaneous residual chromatic dispersion monitoring and frequency conversion with gain using a parametric amplifier,�?? Opt. Express 11(23), 3122�??3127 (2003).
[CrossRef]

Other (1)

P. Z. Peebles, Jr., Probability, random variables and random signal principles (McGraw Hill, New York, 2001).

Supplementary Material (1)

» Media 1: AVI (1785 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(top) Pulses reach higher gains than noise of the same average power. The pulses receive more average gain and a larger average output. (middle) Schematic illustration of gain as a function of instantaneous input power for a nonlinear power transfer function. High instantaneous input powers receive high gains. (bottom) Output signals have different average powers because of the different gain received.

Fig. 2.
Fig. 2.

Frame 1 of the animation. (left) The plot of average output power against OSNR. (right) The pdf of the input (dashed line), a quadratic PTF (dotted line) and the product of the pdf with the PTF (solid line). The shaded area indicates the average output power. [Media 1]

Fig. 3.
Fig. 3.

(left) The pdf of the undispersed pulse train (dashed line), a quadratic power transfer function (dotted line) and the product of the pdf with the power transfer function (solid line). The shaded area indicates the average output power. (right) The pulse train is dispersed resulting in pulse broadening and compression of its pdf to lower powers.

Fig. 4.
Fig. 4.

Output of the optical parametric amplifier. Only the signal and pump waves are launched, but many waves are generated.

Fig. 5.
Fig. 5.

The experimental setup. TDE: Tunable dispersive element, BPF: Bandpass filter, VA: Variable attenuator, C: Coupler, PS: Polarisation scrambler, DSF: Dispersion shifted fibre, ATT: Attenuator.

Fig. 6.
Fig. 6.

(a) The experimental nonlinear power transfer function. (b) The gain spectrum of the signal.

Fig. 7.
Fig. 7.

(a) Dispersion monitoring curves for a clean pulse train and two pulse trains of OSNR 15.8 dB and 9.4 dB. The points are experimental data and the thick lines are from numerical simulation with uncertainty indicated by the thin lines. (b) The autocorrelation measured pulse widths at ‘A’. (c) OSNR monitoring curves for an undispersed pulse train and one with -78 ps/nm dispersion. The boxed area is the OSNR region of interest for high speed systems and is shown magnified in (d).

Fig. 8.
Fig. 8.

(a) The pdf of a 40 Gb/s signal is compared to the pdf of ASE. The quadratic PTF amplifies the upper part of the ASE giving it more gain than the signal (b) OSNR monitoring curve simulated for a 50% duty cycle signal using a quadratic PTF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( p a , p b ) = p a p b pdf in ( p ) d p
p out = 0 PTF ( p ) . pdf in ( p ) d p .

Metrics