Abstract

A complete methodology has been developed to integrate simultaneous diffuse optical tomography (DOT) and functional magnetic resonance imaging (MRI) measurements. This includes development of an MRI-compatible optical probe and a method for accurate estimation of the positions of the source and detector optodes in the presence of subject-specific geometric deformations of the optical probe. Subject-specific head models are generated by segmentation of structural MR images. DOT image reconstruction involves solution of the forward problem of light transport in the head using Monte Carlo simulations, and inversion of the linearized problem for small perturbations of the absorption coefficient. Initial results show good co-localization between the DOT images of changes in oxy- and deoxyhemoglobin concentration and functional MRI data.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Cutler, �??Transillumination as an aid in the diagnosis of breast lesion,�?? Surg. Gynecol. Obstet. 48, 721- 730 (1929).
  2. S. R. Arridge, �??Optical tomography in medical imaging,�?? Inverse Problems 15, R1-R53 (1999).
    [CrossRef]
  3. S. R. Arridge, M. Cope, P. van der Zee, P. J. Hillson, and D. T. Delpy, �??Visualization of the oxygenation state of the brain and muscle in newborn infants by near infrared transillumination, in: Information Processing in Medical Imaging,�?? S. L. Bacharach, ed., Martinus Nijholff Ltd (1986).
  4. P. Van der Zee and D.T. Delpy, "Simulation of the point spread function for light in tissue by a Monte Carlo method," Adv. Exp. Med. Biol. 215:179-91 (1987)
    [PubMed]
  5. P. Rolfe,�??In vivo near-infrared spectroscopy,�?? Ann. Rev. Biomed. Eng. 2, 715-54 (2000).
    [CrossRef]
  6. Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and T. Mamoru, �??Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,�?? Brain. Res. Cogn. Brain. Res. 9(3), 339-342 (2000).
    [CrossRef]
  7. H. Obrig and A. Villringer, �??Beyond the visible-imaging the human brain with light,�?? J. Cereb. Blood Flow Metab. 23, 1-18 (2003).
    [CrossRef]
  8. A. Villringer and B. Chance, �??Non-invasive optical spectroscopy and imaging of human brain function,�?? Trends Neurosci. 20, 435-42 (1997).
    [CrossRef] [PubMed]
  9. D. A. Boas, A. M. Dale and M. A. Franceschini, �??Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,�?? Neuroimage 23, S275-288 (2004).
    [CrossRef] [PubMed]
  10. M. A. Franceschini and D. A. Boas, �??Noninvasive measurement of neuronal activity with near-infrared optical imaging,�?? Neuroimage 21, 372-386 (2004).
    [CrossRef] [PubMed]
  11. D. A. Boas and A. M. Dale, �??Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,�?? Appl. Opt. 44, 1957-68 (2005).
    [CrossRef] [PubMed]
  12. B. J. MacIntosh, L. M. Klassen, and R. S. Menon, �??Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans,�?? Neuroimage 20, 1246-52 (2003).
    [CrossRef] [PubMed]
  13. A. Kleinschmidt, H. Obrig, M. Requardt, K. D. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, �??Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy,�?? J. Cereb. Blood Flow Metab. 16, 817�??826 (1996).
    [CrossRef] [PubMed]
  14. G. Strangman, J. P. Culver, J. H. Thompson, and D. A.Boas, �??A quantitative comparison of simultaneous BOLD fMRI and NIRS recording during functional brain activation,�?? Neuroimage, 17, 719-731 (2002).
    [CrossRef] [PubMed]
  15. V. Toronov, A. Webb, J. H. Choi, M. Wolf, L. Safanova, U. Wolf and E. Gratton, �??Study of local cerebral hemodynamic fluctuations by simultaneous frequency-domain near-infrared spectroscopy and fMRI,�?? Optics Express 9(8), 417-326 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-8-417">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-8-417</a>.
    [CrossRef]
  16. V. Toronov, S. Walker, R. Gupta, J. H. Choi, E. Gratton, D. Hueber, and A. G. Webb, �??The roles of changes in deoxyhemoglobin concentration and regional cerebral blood volume in the fMRI BOLD signal,�?? Neuroimage 19, 1521-31 (2003).
    [CrossRef] [PubMed]
  17. M. Wolf, U. Wolf, J. H. Choi, V. Toronov, L.A. Paunescu, A. Michalos, and E. Gratton., �??Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry,�?? Psychophysiology 40(4):521-8 (2003).
    [CrossRef]
  18. R. Araki and I. Nashimoto, �??Near-infrared imaging in vivo (I): Image restoration technique applicable to the NIR projection images,�?? Adv. Exp. Med. Biol. 316, 155-61 (1992).
    [CrossRef] [PubMed]
  19. R. Araki and I. Nashimoto, �??Near-infrared imaging in vivo (II): Image restoration technique applicable to the NIR projection images,�?? Adv. Exp. Med. Biol. 316, 173-8 (1992).
    [CrossRef] [PubMed]
  20. V.Toronov, A.Webb, J. H. Choi, M. Wolf, A. Michalos, E. Gratton and D. Hueber, �??Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,�?? Med. Phys. 24, 521-527, (2001).
    [CrossRef]
  21. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, �??Spatial and temporal analysis of human motor activity using noninvasive NIR topography,�?? Med. Phys. 22, 1997-2005 (1995).
    [CrossRef] [PubMed]
  22. C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Muhlnickl, H. Obrig, U. Dirnagl, and A. Villringer, �??Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,�?? Adv. Exp. Med. Biol. 413, 139-47 (1997).
    [PubMed]
  23. M. Patterson, B. Chance, and B. Wilson, �??Time resolved reectance and transmittance for the non-invasive measurement of tissue optical properties,�?? Appl. Optics 28, 2331-2336 (1988).
    [CrossRef]
  24. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H.U. Bucher, and O. Baenziger, �??The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,�?? Phys. Med. Biol. 44, 1743-53 (1999).
    [CrossRef] [PubMed]
  25. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, �??Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,�?? Optics Express, 10, 159-170 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159</a>.
    [PubMed]
  26. A. Dunn and D. Boas, �??Transport-based image reconstruction in turbid media with small source detector separations,�?? Optics Letters 25, 1777-1779 (2000).
    [CrossRef]
  27. S. Fantini, M. A. Franceschini, and E. Gratton, �??Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,�?? J. Opt. Soc. Am. B 11, 2128-38 (1994).
    [CrossRef]
  28. P. Bandettini, A. Jesmanowicz, E. Wong, and J. Hyde, �??Processing strategies for time-course data sets in functional MRI of the human brain,�?? Magn. Reson. Med. 30, 161-173 (1993).
    [CrossRef] [PubMed]

Adv. Exp. Med. Biol. (4)

P. Van der Zee and D.T. Delpy, "Simulation of the point spread function for light in tissue by a Monte Carlo method," Adv. Exp. Med. Biol. 215:179-91 (1987)
[PubMed]

R. Araki and I. Nashimoto, �??Near-infrared imaging in vivo (I): Image restoration technique applicable to the NIR projection images,�?? Adv. Exp. Med. Biol. 316, 155-61 (1992).
[CrossRef] [PubMed]

R. Araki and I. Nashimoto, �??Near-infrared imaging in vivo (II): Image restoration technique applicable to the NIR projection images,�?? Adv. Exp. Med. Biol. 316, 173-8 (1992).
[CrossRef] [PubMed]

C. Hirth, K. Villringer, A. Thiel, J. Bernarding, W. Muhlnickl, H. Obrig, U. Dirnagl, and A. Villringer, �??Towards brain mapping combining near-infrared spectroscopy and high resolution 3D MRI,�?? Adv. Exp. Med. Biol. 413, 139-47 (1997).
[PubMed]

Ann. Rev. Biomed. Eng. (1)

P. Rolfe,�??In vivo near-infrared spectroscopy,�?? Ann. Rev. Biomed. Eng. 2, 715-54 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Optics (1)

M. Patterson, B. Chance, and B. Wilson, �??Time resolved reectance and transmittance for the non-invasive measurement of tissue optical properties,�?? Appl. Optics 28, 2331-2336 (1988).
[CrossRef]

Brain. Res. Cogn. Brain. Res. (1)

Y. Hoshi, I. Oda, Y. Wada, Y. Ito, Y. Yamashita, M. Oda, K. Ohta, Y. Yamada, and T. Mamoru, �??Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography,�?? Brain. Res. Cogn. Brain. Res. 9(3), 339-342 (2000).
[CrossRef]

Information Processing in Medical Imagin (1)

S. R. Arridge, M. Cope, P. van der Zee, P. J. Hillson, and D. T. Delpy, �??Visualization of the oxygenation state of the brain and muscle in newborn infants by near infrared transillumination, in: Information Processing in Medical Imaging,�?? S. L. Bacharach, ed., Martinus Nijholff Ltd (1986).

Inverse Problems (1)

S. R. Arridge, �??Optical tomography in medical imaging,�?? Inverse Problems 15, R1-R53 (1999).
[CrossRef]

J. Cereb. Blood Flow Metab. (2)

H. Obrig and A. Villringer, �??Beyond the visible-imaging the human brain with light,�?? J. Cereb. Blood Flow Metab. 23, 1-18 (2003).
[CrossRef]

A. Kleinschmidt, H. Obrig, M. Requardt, K. D. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, �??Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy,�?? J. Cereb. Blood Flow Metab. 16, 817�??826 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Magn. Reson. Med. (1)

P. Bandettini, A. Jesmanowicz, E. Wong, and J. Hyde, �??Processing strategies for time-course data sets in functional MRI of the human brain,�?? Magn. Reson. Med. 30, 161-173 (1993).
[CrossRef] [PubMed]

Med. Phys. (2)

V.Toronov, A.Webb, J. H. Choi, M. Wolf, A. Michalos, E. Gratton and D. Hueber, �??Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging,�?? Med. Phys. 24, 521-527, (2001).
[CrossRef]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, �??Spatial and temporal analysis of human motor activity using noninvasive NIR topography,�?? Med. Phys. 22, 1997-2005 (1995).
[CrossRef] [PubMed]

Neuroimage (5)

G. Strangman, J. P. Culver, J. H. Thompson, and D. A.Boas, �??A quantitative comparison of simultaneous BOLD fMRI and NIRS recording during functional brain activation,�?? Neuroimage, 17, 719-731 (2002).
[CrossRef] [PubMed]

B. J. MacIntosh, L. M. Klassen, and R. S. Menon, �??Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans,�?? Neuroimage 20, 1246-52 (2003).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale and M. A. Franceschini, �??Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,�?? Neuroimage 23, S275-288 (2004).
[CrossRef] [PubMed]

M. A. Franceschini and D. A. Boas, �??Noninvasive measurement of neuronal activity with near-infrared optical imaging,�?? Neuroimage 21, 372-386 (2004).
[CrossRef] [PubMed]

V. Toronov, S. Walker, R. Gupta, J. H. Choi, E. Gratton, D. Hueber, and A. G. Webb, �??The roles of changes in deoxyhemoglobin concentration and regional cerebral blood volume in the fMRI BOLD signal,�?? Neuroimage 19, 1521-31 (2003).
[CrossRef] [PubMed]

Optics Express (2)

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, �??Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,�?? Optics Express, 10, 159-170 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-159</a>.
[PubMed]

V. Toronov, A. Webb, J. H. Choi, M. Wolf, L. Safanova, U. Wolf and E. Gratton, �??Study of local cerebral hemodynamic fluctuations by simultaneous frequency-domain near-infrared spectroscopy and fMRI,�?? Optics Express 9(8), 417-326 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-8-417">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-8-417</a>.
[CrossRef]

Optics Letters (1)

A. Dunn and D. Boas, �??Transport-based image reconstruction in turbid media with small source detector separations,�?? Optics Letters 25, 1777-1779 (2000).
[CrossRef]

Phys. Med. Biol. (1)

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H.U. Bucher, and O. Baenziger, �??The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,�?? Phys. Med. Biol. 44, 1743-53 (1999).
[CrossRef] [PubMed]

Psychophysiology (1)

M. Wolf, U. Wolf, J. H. Choi, V. Toronov, L.A. Paunescu, A. Michalos, and E. Gratton., �??Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry,�?? Psychophysiology 40(4):521-8 (2003).
[CrossRef]

Surg. Gynecol. Obstet. (1)

M. Cutler, �??Transillumination as an aid in the diagnosis of breast lesion,�?? Surg. Gynecol. Obstet. 48, 721- 730 (1929).

Trends Neurosci. (1)

A. Villringer and B. Chance, �??Non-invasive optical spectroscopy and imaging of human brain function,�?? Trends Neurosci. 20, 435-42 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of the fMRI-compatible optical probe. (b) Optode positions reconstructed from MR images, superimposed on a surface rendering of a 3D MRI data set.

Fig. 2.
Fig. 2.

a) Simulated activation (modeled as a change in absorption coefficient) compared with the (b) reconstructed result. One-dimensional projections of the simulated and reconstructed absorption perturbations are plotted as functions of distance from the center of the cross-hairs along the X (c) and Y (d) coordinates.

Fig. 3.
Fig. 3.

(a–c) Spatial maps of the correlation coefficient, shown as the colour bar on the right. (a) Spatial hemodynamic response derived from the BOLD MRI signal, (b) spatial hemodynamic response corresponding to the change in deoxyhemoglobin concentration derived from the reconstructed optical data, (c) spatial hemodynamic response corresponding to the change in oxyhemoglobin concentration derived from the reconstructed optical data. (d–e) Temporal changes in oxy- and deoxyhemoglobin concentrations derived from the optical data. (d) Temporal hemodynamic response of corresponding to an average of all voxels with a correlation coefficient greater than 0.5, (e) response from voxels within the sensitivity region but with a correlation coefficient less than 0.5, and (f) response from the single voxel showing the maximum changes in the oxy- and deoxyhemoglobin concentrations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U sd = p exp ( n k n l n p )
δ U sd = m δ μ a m [ p l m p exp ( n k ¯ n l n p ) ]
δ V / V ¯ = U ¯ sd 1 m δ μ a m K m
AX = B

Metrics