Abstract

A 2×2 digital optical switch using two symmetrical unidirectional Bragg grating couplers is proposed and studied in this paper. A low-loss polymer is used as waveguide material, and the Bragg grating coupling efficiency is optimized to be 22%, then the unidirectional coupling efficiency of 99.9% is achieved in theory. The performance of the switch based on the unidirectional couplers with Bragg gratings is theoretically modeled and simulated. Finally, the 2.4dB insertion loss, the -17dB crosstalk between two output ports, the 28 dB extinction ratio, the 1.5ms response speed and the 87mW power consumption are experimentally demonstrated with this regime.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Ramaswami and K. N. Sivarajan, �??Wavelengh routing network,�?? in Optical Networks: A Practical Perspective, J. Mann, Y. Overton, C. Palmer and K. Johnson, eds. (Acadamic, San Francisco, Calif., 1998), pp. 329-389.
  2. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportis, �??Optical switching: switch fabrics, techniques, and architectures,�?? J. Lightwave Technol. 21, 384-405 (2003).
    [CrossRef]
  3. T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, and K. Asama, �??Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,�?? Opt. Eng. 42, 439-446 (2003).
    [CrossRef]
  4. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, �??New structure of Silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8x8 optical matrix switch,�?? J. Lightwave Technol. 20, 993-1000 (2000).
    [CrossRef]
  5. M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, and S. G. Han, �??Asymmetric X-junction thermooptic switches based on fluorinated polymer waveguides,�?? IEEE Photon. Technol. Lett. 10, 813-815 (1998).
    [CrossRef]
  6. N. Keil, H. H. Yao, and C. Zawadzki, �??(2x2) digital optical switch realized by low cost polymer waveguide technology,�?? Electron. Lett. 32, 1470-1471 (1996).
    [CrossRef]
  7. S. S. Lee, and S. Y. Shin, �??Polymeric digital optical switch with a linear branch and an optimized coupling region,�?? in Integrated Optics Devices: Potential for Commercialization, S. I. Najafi, M. N. Armenise, eds., Proc. SPIE 2997, 126-134 (1997).
  8. D. G. Sun and Ray T. Chen, "Polymer-based highly multimode electro-optic waveguide modulator," Appl. Phys. Lett. 72, 3139-3141 (1998).
    [CrossRef]
  9. P. Pascal et al., �??Optimized coupling of a Gaussian beam into a waveguide with a grating coupler: comparison of experimental and theoretical results,�?? Appl. Opt. 36, 2443-2447 (1997).
    [CrossRef] [PubMed]
  10. D. G. Sun, C. Zhao, and Ray T. Chen, "Intraplane to interplane optical interconnects with high diffraction efficiency electrooptic grating," Appl. Opt. 36, 629-634 (1997).
    [CrossRef] [PubMed]
  11. A. Yariv and P. Yeh, Optical Wave in Crystals, Wiley, (New York 1994).
  12. Y. Hida, H. Onose, and S. Imamura, �??Polymer waveguide thermooptic switch with low electric power consumption at 1.3 µm,�?? IEEE Photon. Technol. Lett. 5, 782-784 (1993).
    [CrossRef]
  13. M. B. J. Diemeer, J. J. Brons, and E. S. Trommel, �??Polymeric optical waveguide switch using the thermooptic effect,�?? J. Lightwave Technol. 7, 449-453 (1989).
    [CrossRef]
  14. BCB 3022-25,from Dow Chemical Co., Midland, MI 48674, <a href="http://www.dow.com/cyclotene/prod/402235.htm.">http://www.dow.com/cyclotene/prod/402235.htm</a>

Appl. Opt.

Appl. Phys. Lett.

D. G. Sun and Ray T. Chen, "Polymer-based highly multimode electro-optic waveguide modulator," Appl. Phys. Lett. 72, 3139-3141 (1998).
[CrossRef]

Electron. Lett.

N. Keil, H. H. Yao, and C. Zawadzki, �??(2x2) digital optical switch realized by low cost polymer waveguide technology,�?? Electron. Lett. 32, 1470-1471 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, and S. G. Han, �??Asymmetric X-junction thermooptic switches based on fluorinated polymer waveguides,�?? IEEE Photon. Technol. Lett. 10, 813-815 (1998).
[CrossRef]

Y. Hida, H. Onose, and S. Imamura, �??Polymer waveguide thermooptic switch with low electric power consumption at 1.3 µm,�?? IEEE Photon. Technol. Lett. 5, 782-784 (1993).
[CrossRef]

J. Lightwave Technol.

Opt. Eng.

T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, and K. Asama, �??Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,�?? Opt. Eng. 42, 439-446 (2003).
[CrossRef]

Optical Networks:A Practical Perspective

R. Ramaswami and K. N. Sivarajan, �??Wavelengh routing network,�?? in Optical Networks: A Practical Perspective, J. Mann, Y. Overton, C. Palmer and K. Johnson, eds. (Acadamic, San Francisco, Calif., 1998), pp. 329-389.

Proc. SPIE

S. S. Lee, and S. Y. Shin, �??Polymeric digital optical switch with a linear branch and an optimized coupling region,�?? in Integrated Optics Devices: Potential for Commercialization, S. I. Najafi, M. N. Armenise, eds., Proc. SPIE 2997, 126-134 (1997).

Other

BCB 3022-25,from Dow Chemical Co., Midland, MI 48674, <a href="http://www.dow.com/cyclotene/prod/402235.htm.">http://www.dow.com/cyclotene/prod/402235.htm</a>

A. Yariv and P. Yeh, Optical Wave in Crystals, Wiley, (New York 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Configuration of a 2×2 themo-optic waveguide switch using unidirectional couplers with Bragg gratings, where Fig. 1(a) is the top view and Fig. 1(b) is the cross-section

Fig. 2.
Fig. 2.

Schematically coupled processes of optical beams in the waveguide-Bragg-grating regime: (a) the coupled-out case of an optical beam from waveguide channel; (b) the coupled-in case of an optical beam from outside

Fig. 3.
Fig. 3.

BPM simulation results of single-mode waveguide structure: (a) the cross-section of waveguide channel; (b) the beam profile of a single-mode

Fig. 4.
Fig. 4.

Simulation for the coupling efficiencies of Bragg grating vs. Bragg period with respect to three typical wavelength values

Fig. 5.
Fig. 5.

Simulation for both the coupling efficiencies unidirectional process and the normal bi-directional coupling process

Fig. 6.
Fig. 6.

BPM simulation results of the DOS when a light signal is input from In 1: (a) the top view of DOS system before the electric power is applied; (b) the beam profile of output signal

Fig. 7.
Fig. 7.

BPM simulation results of the DOS when a light signal is input from In 1: (a) the top view of DOS system after the Bragg gratings are eliminated by an electric power; (b) the beam profile of output signal

Fig. 8.
Fig. 8.

Experimental setup for measuring the performance of the 2×2 DOS during the switch is being modulated by a rectangular alternating electric signal: (a) for detecting the modulated output signals at output ports in switching process; (b) for detecting the beam profile of two optical outputs

Fig. 9.
Fig. 9.

Experimental results of switching process during the switch is being modulated by a alternating electric signal: (a) the picture of the modulated output signals at output ports taken on the oscilloscope in switching process; (b) the beam profiles of two optical outputs

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η u = n = 0 m k c 2 ψ 2 η g sin 2 [ ψ ( m + 1 ) Δ L ] [ 1 k c 2 ψ 2 η g sin 2 ( ψ m Δ L ) ]
η b = k c 2 ψ 2 sin 2 ( ψ L )
β 1 , 2 = 2 π λ n 1 , 2 sin θ 1 , 2 ,
α 1 , 2 = 2 π λ n 1 , 2 cos θ 1 , 2
η g = [ sin ( D g · Δ α ) D g · Δ α ] 2 sin 2 ( K g · D g )
K g = ω 2 μ 2 α 1 α 2 P 1 · Δ ε P 2
P = κ W W H L H t W ( 1 + 0.88 t W W H ) · Δ T

Metrics