Abstract

A chloroaluminum-phthalocyanine (AlCl-Pc) with tetra-α-butoxy chains (AlCl-Pc-OC4) has been synthesized and the photophysical parameters have been determined using steady-state and time-resolved absorption as well as emission spectroscopy. A luminescence from S2 excited state with long lifetime (5.71ns) is observed. A multi level model has been proposed to explain the photophysical processes after Soret-band excitation (λex=355nm). The optical limiting performance for 532nm-7ns laser pulses of AlCl-Pc-OC4 has been investigated in THF solution. The σex and ratio of σex/σ0 has been calculated. The good optical limiting performance is attributed to a reverse saturable absorption mechanism. It indicates that AlCl-Pc-OC4 could be promising candidates for optical limiting material.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Axially substituted phthalocyanine/naphthalocyanine doped in glass matrix: an approach to the practical use for optical limiting material

Hua Yuan, Jun Chen, Tao Zhang, Shuangqing Wang, Rui Hu, Shayu Li, and Guoqiang Yang
Opt. Express 24(9) 9723-9733 (2016)

Enhanced optical limiting and nonlinear absorption properties of azoarene-appended phosphorus (V) tetratolylporphyrins

P. Prem Kiran, D. Raghunath Reddy, Bhaskar G. Maiya, Aditya K. Dharmadhikari, G. Ravindra Kumar, and Narayana Rao Desai
Appl. Opt. 41(36) 7631-7636 (2002)

Optical limiting of pentaazadentate metal complexes for picosecond pulses in solution

Fengqi Guo, Wenfang Sun, Duoyuan Wang, Lizheng Zhao, Zhenzhong Lu, and Yuxin Nie
Appl. Opt. 40(9) 1386-1388 (2001)

References

  • View by:
  • |
  • |
  • |

  1. J. V. Moloney, Nonlinear optical materials (Springer: New York, 1998).
    [Crossref]
  2. G. A. Kumar, “Nonlinear optical response and reverse saturable absorption of rare earth phthalocyanine in DMF solution,” J. Nonlinear Opt. Phys. Mat. 12(3), 367–376 (2003).
    [Crossref]
  3. M. Hanack, D. Dini, M. Barthel, and S. Vagin, “Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds,” Chem. Record. 2, 129–148 (2002).
    [Crossref]
  4. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption and optical limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
    [Crossref] [PubMed]
  5. F. Z. Henari, “Optical switching in organometallic phthalocyanines,” J. Opt. A: Pure Appl. Opt 3, 188–190 (2001).
    [Crossref]
  6. C. C. Leznoff and A. B. P. Lever, Phthalocyanines-Properties and Applications, (Vol. I–IV, VCH, New York, 1989, 1992, 1993, 1996).
  7. A. N. Cammidge, M. J. Cook, K. J. Harrison, and N. B. Mckeown, “Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals,” J. Chem. Soc., Perkin Trans. 1, (12), 3053–3058 (1991).
    [Crossref]
  8. R. D. George, A. W. Snow, J. S. Shirk, and W. R. Barger, “The alpha substitution effect on phthalocyanine aggregation,” J. Porphyrins Phthalocyanines 2, 1–7 (1998).
    [Crossref]
  9. A. W. Snow, J. S. Shirk, and R. G. S. Pong, “Oligooxyethylene liquid Phthalocyanines,” J. Porphyrins Phthalocyanines 4, 518–524 (2000).
    [Crossref]
  10. M. Calvete, G. Y. Yang, and M. Hanack, “Porphyrins and phthalocyanines as materials for optical limiting,” Synthetic Metals 141, 231–243 (2004).
    [Crossref]
  11. (A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, “Third Harmonic Generation in Phthalocyanines,” J. Appl. Phys.62, 716–718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, “Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,” J. Phys. Chem.97, 10515–10517 (1993).
    [Crossref]
  12. It was characterized by UV-Vis, IR, 1HNMR and TOF-MS. 1HNMR(CDCl3, 300MHz) signals show multiplet for the regioisomers of the AlCl-Pc-OC4: 9.111~8.918(m, 4H), 8.136~8.030(m, 4H), 7.611~7.528(m, 4H), 4.941~4.627(m, 8H), 2.446~2.400(m, 8H), 2.172~2.124(m, 8H), 1.383~1.310(m, 12H). TOF-MS found 861.9 (calu. 862.5).
  13. I. Rückmann, A. Zeug, R. Herter, and B. Röder, “On the influence of higher excited states on the ISC quantum yield of Octa-α-alkyloxy-substituted Zn-Phthalocyanine molecules studied by nonlinear absorption,” Photochemistry and Photobiology 66(5), 576–584 (1997).
    [Crossref]
  14. A. T. Rhys Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst. 108, 1067–1071 (1983).
    [Crossref]
  15. R. Bonneau, I. Carmichael, and G. L. Hug, “Molar absorption coefficients of transient species in solution,” Pure & Appl. Chem. 63(2), 289–299 (1991).
    [Crossref]
  16. R. Bensasson, C. R. Gold Schmidt, E. J. Land, and T. G. Trascott, “Laser intensity and the comparative method for determination of triplet quantum yields,” Photochem. Photobiol. 28, 277–281 (1978).
    [Crossref]
  17. F. Morlet-Savary, C. Ley, P. Jacques, F. Wieder, and J. P. Fouassier, “Time dependent solvent effects on the T1-Tn absorption spectra of thioxanthone: a picosecond investigation,” J. Photochem. Photobiol. A: Chem. 126, 7–14 (1999).
    [Crossref]
  18. H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, “Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,” Chemical Physics Letters 242, 644–649 (1995).
    [Crossref]
  19. K. Tokumaru, “Photochemical and photophysical behavior of porphyrins and phthalocyanines irradiated with violet or ultraviolet light,” J. Porphyrins Phthalocyanines 5, 77–86 (2001).
    [Crossref]
  20. J. H. Brannon and D. Magde, “Picosecond laser photophysics. Group 3A phthalocyanines,” J. Am Chem. Soc. 102, 62–65 (1980).
    [Crossref]
  21. J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, K. Alvarez, and I. Choong, “Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines,” Opt. Lett. 19, 625–627 (1994).
    [Crossref] [PubMed]
  22. M. M. McKerns, W. Sun, C. M. Lawson, and G. M. Gray, “Higher-order triplet interaction in energy-level modeling of excited-state absorption for an expanded porphyrin cadmium complex,” J. Opt. Soc. Am. B 22(4), 852–861 (2005).
    [Crossref]
  23. J. S. Shirk, R. F. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines,” J. Phys. Chem. A. 104, 1438–1449 (2000).
    [Crossref]
  24. T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chemical Physics 116, 2536–2541 (2002).
    [Crossref]

2005 (1)

M. M. McKerns, W. Sun, C. M. Lawson, and G. M. Gray, “Higher-order triplet interaction in energy-level modeling of excited-state absorption for an expanded porphyrin cadmium complex,” J. Opt. Soc. Am. B 22(4), 852–861 (2005).
[Crossref]

2004 (1)

M. Calvete, G. Y. Yang, and M. Hanack, “Porphyrins and phthalocyanines as materials for optical limiting,” Synthetic Metals 141, 231–243 (2004).
[Crossref]

2003 (1)

G. A. Kumar, “Nonlinear optical response and reverse saturable absorption of rare earth phthalocyanine in DMF solution,” J. Nonlinear Opt. Phys. Mat. 12(3), 367–376 (2003).
[Crossref]

2002 (2)

M. Hanack, D. Dini, M. Barthel, and S. Vagin, “Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds,” Chem. Record. 2, 129–148 (2002).
[Crossref]

T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chemical Physics 116, 2536–2541 (2002).
[Crossref]

2001 (2)

K. Tokumaru, “Photochemical and photophysical behavior of porphyrins and phthalocyanines irradiated with violet or ultraviolet light,” J. Porphyrins Phthalocyanines 5, 77–86 (2001).
[Crossref]

F. Z. Henari, “Optical switching in organometallic phthalocyanines,” J. Opt. A: Pure Appl. Opt 3, 188–190 (2001).
[Crossref]

2000 (2)

A. W. Snow, J. S. Shirk, and R. G. S. Pong, “Oligooxyethylene liquid Phthalocyanines,” J. Porphyrins Phthalocyanines 4, 518–524 (2000).
[Crossref]

J. S. Shirk, R. F. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines,” J. Phys. Chem. A. 104, 1438–1449 (2000).
[Crossref]

1999 (1)

F. Morlet-Savary, C. Ley, P. Jacques, F. Wieder, and J. P. Fouassier, “Time dependent solvent effects on the T1-Tn absorption spectra of thioxanthone: a picosecond investigation,” J. Photochem. Photobiol. A: Chem. 126, 7–14 (1999).
[Crossref]

1998 (1)

R. D. George, A. W. Snow, J. S. Shirk, and W. R. Barger, “The alpha substitution effect on phthalocyanine aggregation,” J. Porphyrins Phthalocyanines 2, 1–7 (1998).
[Crossref]

1997 (1)

I. Rückmann, A. Zeug, R. Herter, and B. Röder, “On the influence of higher excited states on the ISC quantum yield of Octa-α-alkyloxy-substituted Zn-Phthalocyanine molecules studied by nonlinear absorption,” Photochemistry and Photobiology 66(5), 576–584 (1997).
[Crossref]

1995 (2)

H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, “Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,” Chemical Physics Letters 242, 644–649 (1995).
[Crossref]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photon absorption and optical limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[Crossref] [PubMed]

1994 (1)

1991 (2)

R. Bonneau, I. Carmichael, and G. L. Hug, “Molar absorption coefficients of transient species in solution,” Pure & Appl. Chem. 63(2), 289–299 (1991).
[Crossref]

A. N. Cammidge, M. J. Cook, K. J. Harrison, and N. B. Mckeown, “Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals,” J. Chem. Soc., Perkin Trans. 1, (12), 3053–3058 (1991).
[Crossref]

1983 (1)

A. T. Rhys Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst. 108, 1067–1071 (1983).
[Crossref]

1980 (1)

J. H. Brannon and D. Magde, “Picosecond laser photophysics. Group 3A phthalocyanines,” J. Am Chem. Soc. 102, 62–65 (1980).
[Crossref]

1978 (1)

R. Bensasson, C. R. Gold Schmidt, E. J. Land, and T. G. Trascott, “Laser intensity and the comparative method for determination of triplet quantum yields,” Photochem. Photobiol. 28, 277–281 (1978).
[Crossref]

Alvarez, K.

Arai, T.

H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, “Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,” Chemical Physics Letters 242, 644–649 (1995).
[Crossref]

Barger, W. R.

R. D. George, A. W. Snow, J. S. Shirk, and W. R. Barger, “The alpha substitution effect on phthalocyanine aggregation,” J. Porphyrins Phthalocyanines 2, 1–7 (1998).
[Crossref]

Barthel, M.

M. Hanack, D. Dini, M. Barthel, and S. Vagin, “Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds,” Chem. Record. 2, 129–148 (2002).
[Crossref]

Bensasson, R.

R. Bensasson, C. R. Gold Schmidt, E. J. Land, and T. G. Trascott, “Laser intensity and the comparative method for determination of triplet quantum yields,” Photochem. Photobiol. 28, 277–281 (1978).
[Crossref]

Bhatt, J. C.

Bonneau, R.

R. Bonneau, I. Carmichael, and G. L. Hug, “Molar absorption coefficients of transient species in solution,” Pure & Appl. Chem. 63(2), 289–299 (1991).
[Crossref]

Brannon, J. H.

J. H. Brannon and D. Magde, “Picosecond laser photophysics. Group 3A phthalocyanines,” J. Am Chem. Soc. 102, 62–65 (1980).
[Crossref]

Calvete, M.

M. Calvete, G. Y. Yang, and M. Hanack, “Porphyrins and phthalocyanines as materials for optical limiting,” Synthetic Metals 141, 231–243 (2004).
[Crossref]

Cammidge, A. N.

A. N. Cammidge, M. J. Cook, K. J. Harrison, and N. B. Mckeown, “Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals,” J. Chem. Soc., Perkin Trans. 1, (12), 3053–3058 (1991).
[Crossref]

Carmichael, I.

R. Bonneau, I. Carmichael, and G. L. Hug, “Molar absorption coefficients of transient species in solution,” Pure & Appl. Chem. 63(2), 289–299 (1991).
[Crossref]

Choong, I.

Chosrowjan, H.

H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, “Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,” Chemical Physics Letters 242, 644–649 (1995).
[Crossref]

Cook, M. J.

A. N. Cammidge, M. J. Cook, K. J. Harrison, and N. B. Mckeown, “Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals,” J. Chem. Soc., Perkin Trans. 1, (12), 3053–3058 (1991).
[Crossref]

Dillard, A. G.

Dini, D.

M. Hanack, D. Dini, M. Barthel, and S. Vagin, “Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds,” Chem. Record. 2, 129–148 (2002).
[Crossref]

Flom, S. R.

J. S. Shirk, R. F. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines,” J. Phys. Chem. A. 104, 1438–1449 (2000).
[Crossref]

Fouassier, J. P.

F. Morlet-Savary, C. Ley, P. Jacques, F. Wieder, and J. P. Fouassier, “Time dependent solvent effects on the T1-Tn absorption spectra of thioxanthone: a picosecond investigation,” J. Photochem. Photobiol. A: Chem. 126, 7–14 (1999).
[Crossref]

George, R. D.

R. D. George, A. W. Snow, J. S. Shirk, and W. R. Barger, “The alpha substitution effect on phthalocyanine aggregation,” J. Porphyrins Phthalocyanines 2, 1–7 (1998).
[Crossref]

Gold Schmidt, C. R.

R. Bensasson, C. R. Gold Schmidt, E. J. Land, and T. G. Trascott, “Laser intensity and the comparative method for determination of triplet quantum yields,” Photochem. Photobiol. 28, 277–281 (1978).
[Crossref]

Gray, G. M.

M. M. McKerns, W. Sun, C. M. Lawson, and G. M. Gray, “Higher-order triplet interaction in energy-level modeling of excited-state absorption for an expanded porphyrin cadmium complex,” J. Opt. Soc. Am. B 22(4), 852–861 (2005).
[Crossref]

Hanack, M.

M. Calvete, G. Y. Yang, and M. Hanack, “Porphyrins and phthalocyanines as materials for optical limiting,” Synthetic Metals 141, 231–243 (2004).
[Crossref]

M. Hanack, D. Dini, M. Barthel, and S. Vagin, “Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds,” Chem. Record. 2, 129–148 (2002).
[Crossref]

J. S. Shirk, R. F. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines,” J. Phys. Chem. A. 104, 1438–1449 (2000).
[Crossref]

Harrison, K. J.

A. N. Cammidge, M. J. Cook, K. J. Harrison, and N. B. Mckeown, “Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals,” J. Chem. Soc., Perkin Trans. 1, (12), 3053–3058 (1991).
[Crossref]

He, G. S.

Heckmann, H.

J. S. Shirk, R. F. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines,” J. Phys. Chem. A. 104, 1438–1449 (2000).
[Crossref]

Henari, F. Z.

F. Z. Henari, “Optical switching in organometallic phthalocyanines,” J. Opt. A: Pure Appl. Opt 3, 188–190 (2001).
[Crossref]

Herter, R.

I. Rückmann, A. Zeug, R. Herter, and B. Röder, “On the influence of higher excited states on the ISC quantum yield of Octa-α-alkyloxy-substituted Zn-Phthalocyanine molecules studied by nonlinear absorption,” Photochemistry and Photobiology 66(5), 576–584 (1997).
[Crossref]

Hetherington III, W. M.

(A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, “Third Harmonic Generation in Phthalocyanines,” J. Appl. Phys.62, 716–718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, “Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,” J. Phys. Chem.97, 10515–10517 (1993).
[Crossref]

Ho, (A) Z. Z.

(A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, “Third Harmonic Generation in Phthalocyanines,” J. Appl. Phys.62, 716–718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, “Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,” J. Phys. Chem.97, 10515–10517 (1993).
[Crossref]

Hu, J. K.

T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chemical Physics 116, 2536–2541 (2002).
[Crossref]

Huang, T. H.

T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chemical Physics 116, 2536–2541 (2002).
[Crossref]

Hug, G. L.

R. Bonneau, I. Carmichael, and G. L. Hug, “Molar absorption coefficients of transient species in solution,” Pure & Appl. Chem. 63(2), 289–299 (1991).
[Crossref]

Iwayanagi, T.

(A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, “Third Harmonic Generation in Phthalocyanines,” J. Appl. Phys.62, 716–718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, “Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,” J. Phys. Chem.97, 10515–10517 (1993).
[Crossref]

Jacques, P.

F. Morlet-Savary, C. Ley, P. Jacques, F. Wieder, and J. P. Fouassier, “Time dependent solvent effects on the T1-Tn absorption spectra of thioxanthone: a picosecond investigation,” J. Photochem. Photobiol. A: Chem. 126, 7–14 (1999).
[Crossref]

Ju, C. Y.

(A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, “Third Harmonic Generation in Phthalocyanines,” J. Appl. Phys.62, 716–718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, “Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,” J. Phys. Chem.97, 10515–10517 (1993).
[Crossref]

Kakuta, A.

(A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, “Third Harmonic Generation in Phthalocyanines,” J. Appl. Phys.62, 716–718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, “Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,” J. Phys. Chem.97, 10515–10517 (1993).
[Crossref]

Kumar, G. A.

G. A. Kumar, “Nonlinear optical response and reverse saturable absorption of rare earth phthalocyanine in DMF solution,” J. Nonlinear Opt. Phys. Mat. 12(3), 367–376 (2003).
[Crossref]

Land, E. J.

R. Bensasson, C. R. Gold Schmidt, E. J. Land, and T. G. Trascott, “Laser intensity and the comparative method for determination of triplet quantum yields,” Photochem. Photobiol. 28, 277–281 (1978).
[Crossref]

Lawson, C. M.

M. M. McKerns, W. Sun, C. M. Lawson, and G. M. Gray, “Higher-order triplet interaction in energy-level modeling of excited-state absorption for an expanded porphyrin cadmium complex,” J. Opt. Soc. Am. B 22(4), 852–861 (2005).
[Crossref]

Lever, A. B. P.

C. C. Leznoff and A. B. P. Lever, Phthalocyanines-Properties and Applications, (Vol. I–IV, VCH, New York, 1989, 1992, 1993, 1996).

Ley, C.

F. Morlet-Savary, C. Ley, P. Jacques, F. Wieder, and J. P. Fouassier, “Time dependent solvent effects on the T1-Tn absorption spectra of thioxanthone: a picosecond investigation,” J. Photochem. Photobiol. A: Chem. 126, 7–14 (1999).
[Crossref]

Leznoff, C. C.

C. C. Leznoff and A. B. P. Lever, Phthalocyanines-Properties and Applications, (Vol. I–IV, VCH, New York, 1989, 1992, 1993, 1996).

Magde, D.

J. H. Brannon and D. Magde, “Picosecond laser photophysics. Group 3A phthalocyanines,” J. Am Chem. Soc. 102, 62–65 (1980).
[Crossref]

Mansour, K.

Marder, S. R.

Mckeown, N. B.

A. N. Cammidge, M. J. Cook, K. J. Harrison, and N. B. Mckeown, “Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals,” J. Chem. Soc., Perkin Trans. 1, (12), 3053–3058 (1991).
[Crossref]

McKerns, M. M.

M. M. McKerns, W. Sun, C. M. Lawson, and G. M. Gray, “Higher-order triplet interaction in energy-level modeling of excited-state absorption for an expanded porphyrin cadmium complex,” J. Opt. Soc. Am. B 22(4), 852–861 (2005).
[Crossref]

Miller, J. N.

A. T. Rhys Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst. 108, 1067–1071 (1983).
[Crossref]

Moloney, J. V.

J. V. Moloney, Nonlinear optical materials (Springer: New York, 1998).
[Crossref]

Morlet-Savary, F.

F. Morlet-Savary, C. Ley, P. Jacques, F. Wieder, and J. P. Fouassier, “Time dependent solvent effects on the T1-Tn absorption spectra of thioxanthone: a picosecond investigation,” J. Photochem. Photobiol. A: Chem. 126, 7–14 (1999).
[Crossref]

Naiwa, (B) H. S.

(A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, “Third Harmonic Generation in Phthalocyanines,” J. Appl. Phys.62, 716–718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, “Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,” J. Phys. Chem.97, 10515–10517 (1993).
[Crossref]

Okada, T.

H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, “Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,” Chemical Physics Letters 242, 644–649 (1995).
[Crossref]

Perry, J. W.

Perry, K. J.

Pong, R. F. S.

J. S. Shirk, R. F. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines,” J. Phys. Chem. A. 104, 1438–1449 (2000).
[Crossref]

Pong, R. G. S.

A. W. Snow, J. S. Shirk, and R. G. S. Pong, “Oligooxyethylene liquid Phthalocyanines,” J. Porphyrins Phthalocyanines 4, 518–524 (2000).
[Crossref]

Prasad, P. N.

Reinhardt, B. A.

Rhys Williams, A. T.

A. T. Rhys Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst. 108, 1067–1071 (1983).
[Crossref]

Röder, B.

I. Rückmann, A. Zeug, R. Herter, and B. Röder, “On the influence of higher excited states on the ISC quantum yield of Octa-α-alkyloxy-substituted Zn-Phthalocyanine molecules studied by nonlinear absorption,” Photochemistry and Photobiology 66(5), 576–584 (1997).
[Crossref]

Rückmann, I.

I. Rückmann, A. Zeug, R. Herter, and B. Röder, “On the influence of higher excited states on the ISC quantum yield of Octa-α-alkyloxy-substituted Zn-Phthalocyanine molecules studied by nonlinear absorption,” Photochemistry and Photobiology 66(5), 576–584 (1997).
[Crossref]

Saito, T.

(A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, “Third Harmonic Generation in Phthalocyanines,” J. Appl. Phys.62, 716–718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, “Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,” J. Phys. Chem.97, 10515–10517 (1993).
[Crossref]

Shirk, J. S.

A. W. Snow, J. S. Shirk, and R. G. S. Pong, “Oligooxyethylene liquid Phthalocyanines,” J. Porphyrins Phthalocyanines 4, 518–524 (2000).
[Crossref]

J. S. Shirk, R. F. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines,” J. Phys. Chem. A. 104, 1438–1449 (2000).
[Crossref]

R. D. George, A. W. Snow, J. S. Shirk, and W. R. Barger, “The alpha substitution effect on phthalocyanine aggregation,” J. Porphyrins Phthalocyanines 2, 1–7 (1998).
[Crossref]

Snow, A. W.

A. W. Snow, J. S. Shirk, and R. G. S. Pong, “Oligooxyethylene liquid Phthalocyanines,” J. Porphyrins Phthalocyanines 4, 518–524 (2000).
[Crossref]

R. D. George, A. W. Snow, J. S. Shirk, and W. R. Barger, “The alpha substitution effect on phthalocyanine aggregation,” J. Porphyrins Phthalocyanines 2, 1–7 (1998).
[Crossref]

Sun, W.

M. M. McKerns, W. Sun, C. M. Lawson, and G. M. Gray, “Higher-order triplet interaction in energy-level modeling of excited-state absorption for an expanded porphyrin cadmium complex,” J. Opt. Soc. Am. B 22(4), 852–861 (2005).
[Crossref]

Takagi, S.

H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, “Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,” Chemical Physics Letters 242, 644–649 (1995).
[Crossref]

Tanigichi, S.

H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, “Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,” Chemical Physics Letters 242, 644–649 (1995).
[Crossref]

Tokumaru, K.

K. Tokumaru, “Photochemical and photophysical behavior of porphyrins and phthalocyanines irradiated with violet or ultraviolet light,” J. Porphyrins Phthalocyanines 5, 77–86 (2001).
[Crossref]

H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, “Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,” Chemical Physics Letters 242, 644–649 (1995).
[Crossref]

Trascott, T. G.

R. Bensasson, C. R. Gold Schmidt, E. J. Land, and T. G. Trascott, “Laser intensity and the comparative method for determination of triplet quantum yields,” Photochem. Photobiol. 28, 277–281 (1978).
[Crossref]

Vagin, S.

M. Hanack, D. Dini, M. Barthel, and S. Vagin, “Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds,” Chem. Record. 2, 129–148 (2002).
[Crossref]

Wei, T. H.

T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chemical Physics 116, 2536–2541 (2002).
[Crossref]

Wieder, F.

F. Morlet-Savary, C. Ley, P. Jacques, F. Wieder, and J. P. Fouassier, “Time dependent solvent effects on the T1-Tn absorption spectra of thioxanthone: a picosecond investigation,” J. Photochem. Photobiol. A: Chem. 126, 7–14 (1999).
[Crossref]

Winfield, S. A.

A. T. Rhys Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst. 108, 1067–1071 (1983).
[Crossref]

Xu, G. C.

Yang, G. Y.

M. Calvete, G. Y. Yang, and M. Hanack, “Porphyrins and phthalocyanines as materials for optical limiting,” Synthetic Metals 141, 231–243 (2004).
[Crossref]

Zeug, A.

I. Rückmann, A. Zeug, R. Herter, and B. Röder, “On the influence of higher excited states on the ISC quantum yield of Octa-α-alkyloxy-substituted Zn-Phthalocyanine molecules studied by nonlinear absorption,” Photochemistry and Photobiology 66(5), 576–584 (1997).
[Crossref]

Analyst. (1)

A. T. Rhys Williams, S. A. Winfield, and J. N. Miller, “Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,” Analyst. 108, 1067–1071 (1983).
[Crossref]

Chem. Record. (1)

M. Hanack, D. Dini, M. Barthel, and S. Vagin, “Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds,” Chem. Record. 2, 129–148 (2002).
[Crossref]

Chemical Physics Letters (1)

H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, “Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,” Chemical Physics Letters 242, 644–649 (1995).
[Crossref]

J. Am Chem. Soc. (1)

J. H. Brannon and D. Magde, “Picosecond laser photophysics. Group 3A phthalocyanines,” J. Am Chem. Soc. 102, 62–65 (1980).
[Crossref]

J. Chem. Soc., Perkin Trans. (1)

A. N. Cammidge, M. J. Cook, K. J. Harrison, and N. B. Mckeown, “Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals,” J. Chem. Soc., Perkin Trans. 1, (12), 3053–3058 (1991).
[Crossref]

J. Chemical Physics (1)

T. H. Wei, T. H. Huang, and J. K. Hu, “Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,” J. Chemical Physics 116, 2536–2541 (2002).
[Crossref]

J. Nonlinear Opt. Phys. Mat. (1)

G. A. Kumar, “Nonlinear optical response and reverse saturable absorption of rare earth phthalocyanine in DMF solution,” J. Nonlinear Opt. Phys. Mat. 12(3), 367–376 (2003).
[Crossref]

J. Opt. A: Pure Appl. Opt (1)

F. Z. Henari, “Optical switching in organometallic phthalocyanines,” J. Opt. A: Pure Appl. Opt 3, 188–190 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

M. M. McKerns, W. Sun, C. M. Lawson, and G. M. Gray, “Higher-order triplet interaction in energy-level modeling of excited-state absorption for an expanded porphyrin cadmium complex,” J. Opt. Soc. Am. B 22(4), 852–861 (2005).
[Crossref]

J. Photochem. Photobiol. A: Chem. (1)

F. Morlet-Savary, C. Ley, P. Jacques, F. Wieder, and J. P. Fouassier, “Time dependent solvent effects on the T1-Tn absorption spectra of thioxanthone: a picosecond investigation,” J. Photochem. Photobiol. A: Chem. 126, 7–14 (1999).
[Crossref]

J. Phys. Chem. A. (1)

J. S. Shirk, R. F. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, “Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines,” J. Phys. Chem. A. 104, 1438–1449 (2000).
[Crossref]

J. Porphyrins Phthalocyanines (3)

K. Tokumaru, “Photochemical and photophysical behavior of porphyrins and phthalocyanines irradiated with violet or ultraviolet light,” J. Porphyrins Phthalocyanines 5, 77–86 (2001).
[Crossref]

R. D. George, A. W. Snow, J. S. Shirk, and W. R. Barger, “The alpha substitution effect on phthalocyanine aggregation,” J. Porphyrins Phthalocyanines 2, 1–7 (1998).
[Crossref]

A. W. Snow, J. S. Shirk, and R. G. S. Pong, “Oligooxyethylene liquid Phthalocyanines,” J. Porphyrins Phthalocyanines 4, 518–524 (2000).
[Crossref]

Opt. Lett. (2)

Photochem. Photobiol. (1)

R. Bensasson, C. R. Gold Schmidt, E. J. Land, and T. G. Trascott, “Laser intensity and the comparative method for determination of triplet quantum yields,” Photochem. Photobiol. 28, 277–281 (1978).
[Crossref]

Photochemistry and Photobiology (1)

I. Rückmann, A. Zeug, R. Herter, and B. Röder, “On the influence of higher excited states on the ISC quantum yield of Octa-α-alkyloxy-substituted Zn-Phthalocyanine molecules studied by nonlinear absorption,” Photochemistry and Photobiology 66(5), 576–584 (1997).
[Crossref]

Pure & Appl. Chem. (1)

R. Bonneau, I. Carmichael, and G. L. Hug, “Molar absorption coefficients of transient species in solution,” Pure & Appl. Chem. 63(2), 289–299 (1991).
[Crossref]

Synthetic Metals (1)

M. Calvete, G. Y. Yang, and M. Hanack, “Porphyrins and phthalocyanines as materials for optical limiting,” Synthetic Metals 141, 231–243 (2004).
[Crossref]

Other (4)

(A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, “Third Harmonic Generation in Phthalocyanines,” J. Appl. Phys.62, 716–718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, “Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,” J. Phys. Chem.97, 10515–10517 (1993).
[Crossref]

It was characterized by UV-Vis, IR, 1HNMR and TOF-MS. 1HNMR(CDCl3, 300MHz) signals show multiplet for the regioisomers of the AlCl-Pc-OC4: 9.111~8.918(m, 4H), 8.136~8.030(m, 4H), 7.611~7.528(m, 4H), 4.941~4.627(m, 8H), 2.446~2.400(m, 8H), 2.172~2.124(m, 8H), 1.383~1.310(m, 12H). TOF-MS found 861.9 (calu. 862.5).

J. V. Moloney, Nonlinear optical materials (Springer: New York, 1998).
[Crossref]

C. C. Leznoff and A. B. P. Lever, Phthalocyanines-Properties and Applications, (Vol. I–IV, VCH, New York, 1989, 1992, 1993, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Scheme 1.
Scheme 1.

Structure of AlCl-Pc-OC4

Fig. 1.
Fig. 1.

Experimental setup for optical limiting at 532 nm

Fig. 2.
Fig. 2.

Electronic absorption and fluorescence emission spectra (λex=355nm) of argon-saturated solution of AlCl-Pc-OC4 in THF.

Fig. 3.
Fig. 3.

Transient absorption spectra of argon-saturated solution of AlCl-Pc-OC4 in CH2Cl2 excited at 355nm with 25ps pulses. Inserts: (top) ascent gram of S1 state; (bottom) descent gram of ground state.

Fig. 4.
Fig. 4.

Transient absorption spectra of Argon-saturated solution of AlCl-Pc-OC4 in THF excited at 355nm with a 7ns pulses.

Fig. 5.
Fig. 5.

Transmitted fluence response with incident fluence for 7ns pluses at 532nm for AlCl-Pc-OC4 in THF with concentration of 2×10-4mol/l.

Fig. 6.
Fig. 6.

Nonlinear transmittance responses to incident fluence for 7ns pluses at 532nm for AlCl-Pc-OC4 in THF [2×10-4mol/l(▫) and 1×10-4mol/l(∙)].

Fig. 7.
Fig. 7.

The model for the photophysical processes with Soret-band excitation at 355nm of AlCl-Pc-OC4.

Tables (3)

Tables Icon

Table 1. Photophysical Properties of AlCl-Pc-OC4 in THF

Tables Icon

Table 2. Optical Limiting Behaviors of AlCl-Pc-OC4 in THF with Two Different Concentrations (λ=532nm)

Tables Icon

Table 3. Absorption Cross Sections of AlCl-Pc-OC4 and AlCl-Pc (λ=532nm)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T lin = exp ( σ 0 NL )
T lim exp ( σ ex NL )
T lin T lim exp [ ( σ 0 σ ex ) NL ]

Metrics