Abstract

A chloroaluminum-phthalocyanine (AlCl-Pc) with tetra-α-butoxy chains (AlCl-Pc-OC4) has been synthesized and the photophysical parameters have been determined using steady-state and time-resolved absorption as well as emission spectroscopy. A luminescence from S2 excited state with long lifetime (5.71ns) is observed. A multi level model has been proposed to explain the photophysical processes after Soret-band excitation (λex=355nm). The optical limiting performance for 532nm-7ns laser pulses of AlCl-Pc-OC4 has been investigated in THF solution. The σex and ratio of σex/σ0 has been calculated. The good optical limiting performance is attributed to a reverse saturable absorption mechanism. It indicates that AlCl-Pc-OC4 could be promising candidates for optical limiting material.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. V. Moloney, Nonlinear optical materials (Springer: New York, 1998).
    [CrossRef]
  2. G. A. Kumar, �??Nonlinear optical response and reverse saturable absorption of rare earth phthalocyanine in DMF solution,�?? J. Nonlinear Opt. Phys. Mat. 12(3), 367-376 (2003).
    [CrossRef]
  3. M. Hanack, D. Dini, M. Barthel, and S. Vagin, �??Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds,�?? Chem. Record. 2, 129-148 (2002).
    [CrossRef]
  4. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, �??Two-photon absorption and optical limiting properties of novel organic compounds,�?? Opt. Lett. 20, 435-437 (1995).
    [CrossRef] [PubMed]
  5. F. Z. Henari, �??Optical switching in organometallic phthalocyanines,�?? J. Opt. A: Pure Appl. Opt 3, 188-190 (2001).
    [CrossRef]
  6. C. C. Leznoff, A. B. P. Lever, Phthalocyanines-Properties and Applications, (Vol. I-IV, VCH, New York, 1989, 1992, 1993, 1996).
  7. A. N. Cammidge, M. J. Cook, K. J. Harrison, and N. B. Mckeown, �??Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals,�?? J. Chem. Soc., Perkin Trans. 1, (12), 3053-3058 (1991).
    [CrossRef]
  8. R. D. George, A. W. Snow, J. S. Shirk, and W. R. Barger, �??The alpha substitution effect on phthalocyanine aggregation,�?? J. Porphyrins Phthalocyanines 2, 1-7 (1998).
    [CrossRef]
  9. A. W. Snow, J. S. Shirk, and R. G. S. Pong, �??Oligooxyethylene liquid Phthalocyanines,�?? J. Porphyrins Phthalocyanines 4, 518-524 (2000).
    [CrossRef]
  10. M. Calvete, G. Y. Yang, and M. Hanack, �??Porphyrins and phthalocyanines as materials for optical limiting,�?? Synthetic Metals 141, 231-243 (2004).
    [CrossRef]
  11. (A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, �??Third Harmonic Generation in Phthalocyanines,�?? J. Appl. Phys. 62, 716-718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, �??Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,�?? J. Phys. Chem. 97, 10515-10517 (1993).
    [CrossRef]
  12. It was characterized by UV-Vis, IR, ^1HNMR and TOF-MS. ^1HNMR(CDCl3, 300MHz) signals show multiplet for the regioisomers of the AlCl-Pc-OC4: 9.111~8.918(m, 4H), 8.136~8.030(m, 4H), 7.611~7.528(m, 4H), 4.941~4.627(m, 8H), 2.446~2.400(m, 8H), 2.172~2.124(m, 8H), 1.383~1.310(m,12H). TOF-MS found 861.9 (calu. 862.5).
  13. I. Rückmann, A. Zeug, R. Herter, and B. Röder, �??On the influence of higher excited states on the ISC quantum yield of Octa-α-alkyloxy-substituted Zn-Phthalocyanine molecules studied by nonlinear absorption,�?? Photochemistry and Photobiology 66(5), 576-584 (1997).
    [CrossRef]
  14. A. T. Rhys Williams, S. A. Winfield, and J. N. Miller, �??Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,�?? Analyst. 108, 1067-1071 (1983).
    [CrossRef]
  15. R. Bonneau, I. Carmichael, and G. L. Hug, �??Molar absorption coefficients of transient species in solution,�?? Pure & Appl. Chem. 63(2), 289-299 (1991).
    [CrossRef]
  16. R. Bensasson, C. R. Gold Schmidt, E. J. Land, and T. G. Trascott, �??Laser intensity and the comparative method for determination of triplet quantum yields,�?? Photochem. Photobiol. 28, 277-281 (1978).
    [CrossRef]
  17. F. Morlet-Savary, C. Ley, P. Jacques, F. Wieder, and J. P. Fouassier, �??Time dependent solvent effects on the T1-Tn absorption spectra of thioxanthone: a picosecond investigation,�?? J. Photochem. Photobiol. A: Chem. 126, 7-14 (1999).
    [CrossRef]
  18. H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, �??Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,�?? Chemical Physics Letters 242, 644-649 (1995).
    [CrossRef]
  19. K. Tokumaru, �??Photochemical and photophysical behavior of porphyrins and phthalocyanines irradiated with violet or ultraviolet light,�?? J. Porphyrins Phthalocyanines 5, 77-86 (2001).
    [CrossRef]
  20. J. H. Brannon, D. Magde, �??Picosecond laser photophysics. Group 3A phthalocyanines,�?? J. Am Chem. Soc. 102, 62-65 (1980).
    [CrossRef]
  21. J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, K. Alvarez, and I. Choong, �??Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines,�?? Opt. Lett. 19, 625-627 (1994).
    [CrossRef] [PubMed]
  22. M. M. McKerns, W. Sun, C. M. Lawson, and G. M. Gray, �??Higher-order triplet interaction in energy-level modeling of excited-state absorption for an expanded porphyrin cadmium complex,�?? J. Opt. Soc. Am. B 22 (4), 852-861 (2005).
    [CrossRef]
  23. J. S. Shirk, R. F. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, �??Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines,�?? J. Phys. Chem. A. 104, 1438-1449 (2000).
    [CrossRef]
  24. T. H. Wei, T. H. Huang, and J. K. Hu, �??Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,�?? J. Chemical Physics 116, 2536-2541 (2002).
    [CrossRef]

Analyst. (1)

A. T. Rhys Williams, S. A. Winfield, and J. N. Miller, �??Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer,�?? Analyst. 108, 1067-1071 (1983).
[CrossRef]

Chem. Record. (1)

M. Hanack, D. Dini, M. Barthel, and S. Vagin, �??Conjugated Macrocycles as Active Materials in Nonlinear Optical Processes: Optical Limiting Effect with Phthalocyanines and Related Compounds,�?? Chem. Record. 2, 129-148 (2002).
[CrossRef]

Chemical Physics Letters (1)

H. Chosrowjan, S. Tanigichi, T. Okada, S. Takagi, T. Arai, and K. Tokumaru, �??Electron transfer quenching of S2 state fluorescence of Zn-tetraphenylporphyrin,�?? Chemical Physics Letters 242, 644-649 (1995).
[CrossRef]

J. Am Chem. Soc. (1)

J. H. Brannon, D. Magde, �??Picosecond laser photophysics. Group 3A phthalocyanines,�?? J. Am Chem. Soc. 102, 62-65 (1980).
[CrossRef]

J. Chem. Soc., Perkin Trans. (1)

A. N. Cammidge, M. J. Cook, K. J. Harrison, and N. B. Mckeown, �??Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals,�?? J. Chem. Soc., Perkin Trans. 1, (12), 3053-3058 (1991).
[CrossRef]

J. Chemical Physics (1)

T. H. Wei, T. H. Huang, and J. K. Hu, �??Electronic energy dissipation in chloro-aluminum phthalocyanine/methanol system following nonlinear interaction with a train of picosecond pulses,�?? J. Chemical Physics 116, 2536-2541 (2002).
[CrossRef]

J. Nonlinear Opt. Phys. Mat. (1)

G. A. Kumar, �??Nonlinear optical response and reverse saturable absorption of rare earth phthalocyanine in DMF solution,�?? J. Nonlinear Opt. Phys. Mat. 12(3), 367-376 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt (1)

F. Z. Henari, �??Optical switching in organometallic phthalocyanines,�?? J. Opt. A: Pure Appl. Opt 3, 188-190 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. A: Chem. (1)

F. Morlet-Savary, C. Ley, P. Jacques, F. Wieder, and J. P. Fouassier, �??Time dependent solvent effects on the T1-Tn absorption spectra of thioxanthone: a picosecond investigation,�?? J. Photochem. Photobiol. A: Chem. 126, 7-14 (1999).
[CrossRef]

J. Phys. Chem. (1)

(A) Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, �??Third Harmonic Generation in Phthalocyanines,�?? J. Appl. Phys. 62, 716-718 (1987). (B) H. S. Naiwa, T. Saito, A. Kakuta, and T. Iwayanagi, �??Third-order Nonlinear Optical Properties of Polymorphs of Oxotitianium Phthalocyanine,�?? J. Phys. Chem. 97, 10515-10517 (1993).
[CrossRef]

J. Phys. Chem. A (1)

J. S. Shirk, R. F. S. Pong, S. R. Flom, H. Heckmann, and M. Hanack, �??Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines,�?? J. Phys. Chem. A. 104, 1438-1449 (2000).
[CrossRef]

J. Porphyrins Phthalocyanines (3)

K. Tokumaru, �??Photochemical and photophysical behavior of porphyrins and phthalocyanines irradiated with violet or ultraviolet light,�?? J. Porphyrins Phthalocyanines 5, 77-86 (2001).
[CrossRef]

R. D. George, A. W. Snow, J. S. Shirk, and W. R. Barger, �??The alpha substitution effect on phthalocyanine aggregation,�?? J. Porphyrins Phthalocyanines 2, 1-7 (1998).
[CrossRef]

A. W. Snow, J. S. Shirk, and R. G. S. Pong, �??Oligooxyethylene liquid Phthalocyanines,�?? J. Porphyrins Phthalocyanines 4, 518-524 (2000).
[CrossRef]

Opt. Lett. (2)

Photochem. Photobiol. (1)

R. Bensasson, C. R. Gold Schmidt, E. J. Land, and T. G. Trascott, �??Laser intensity and the comparative method for determination of triplet quantum yields,�?? Photochem. Photobiol. 28, 277-281 (1978).
[CrossRef]

Photochemistry and Photobiology (1)

I. Rückmann, A. Zeug, R. Herter, and B. Röder, �??On the influence of higher excited states on the ISC quantum yield of Octa-α-alkyloxy-substituted Zn-Phthalocyanine molecules studied by nonlinear absorption,�?? Photochemistry and Photobiology 66(5), 576-584 (1997).
[CrossRef]

Pure & Appl. Chem. (1)

R. Bonneau, I. Carmichael, and G. L. Hug, �??Molar absorption coefficients of transient species in solution,�?? Pure & Appl. Chem. 63(2), 289-299 (1991).
[CrossRef]

Synthetic Metals (1)

M. Calvete, G. Y. Yang, and M. Hanack, �??Porphyrins and phthalocyanines as materials for optical limiting,�?? Synthetic Metals 141, 231-243 (2004).
[CrossRef]

Other (3)

J. V. Moloney, Nonlinear optical materials (Springer: New York, 1998).
[CrossRef]

It was characterized by UV-Vis, IR, ^1HNMR and TOF-MS. ^1HNMR(CDCl3, 300MHz) signals show multiplet for the regioisomers of the AlCl-Pc-OC4: 9.111~8.918(m, 4H), 8.136~8.030(m, 4H), 7.611~7.528(m, 4H), 4.941~4.627(m, 8H), 2.446~2.400(m, 8H), 2.172~2.124(m, 8H), 1.383~1.310(m,12H). TOF-MS found 861.9 (calu. 862.5).

C. C. Leznoff, A. B. P. Lever, Phthalocyanines-Properties and Applications, (Vol. I-IV, VCH, New York, 1989, 1992, 1993, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Scheme 1.
Scheme 1.

Structure of AlCl-Pc-OC4

Fig. 1.
Fig. 1.

Experimental setup for optical limiting at 532 nm

Fig. 2.
Fig. 2.

Electronic absorption and fluorescence emission spectra (λex=355nm) of argon-saturated solution of AlCl-Pc-OC4 in THF.

Fig. 3.
Fig. 3.

Transient absorption spectra of argon-saturated solution of AlCl-Pc-OC4 in CH2Cl2 excited at 355nm with 25ps pulses. Inserts: (top) ascent gram of S1 state; (bottom) descent gram of ground state.

Fig. 4.
Fig. 4.

Transient absorption spectra of Argon-saturated solution of AlCl-Pc-OC4 in THF excited at 355nm with a 7ns pulses.

Fig. 5.
Fig. 5.

Transmitted fluence response with incident fluence for 7ns pluses at 532nm for AlCl-Pc-OC4 in THF with concentration of 2×10-4mol/l.

Fig. 6.
Fig. 6.

Nonlinear transmittance responses to incident fluence for 7ns pluses at 532nm for AlCl-Pc-OC4 in THF [2×10-4mol/l(▫) and 1×10-4mol/l(∙)].

Fig. 7.
Fig. 7.

The model for the photophysical processes with Soret-band excitation at 355nm of AlCl-Pc-OC4.

Tables (3)

Tables Icon

Table 1. Photophysical Properties of AlCl-Pc-OC4 in THF

Tables Icon

Table 2. Optical Limiting Behaviors of AlCl-Pc-OC4 in THF with Two Different Concentrations (λ=532nm)

Tables Icon

Table 3. Absorption Cross Sections of AlCl-Pc-OC4 and AlCl-Pc (λ=532nm)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T lin = exp ( σ 0 NL )
T lim exp ( σ ex NL )
T lin T lim exp [ ( σ 0 σ ex ) NL ]

Metrics