Abstract

We show the defect dependence of the internal field in Lithium Niobate using a full-field interferometric method and demonstrate that it can be directly measured on some clusters of defects embedded in a stoichiometric matrix. Results show that the value of the internal field grows in proximity of defects and vanishes far from them, which addresses the long-standing issue about its origin in Lithium Niobate crystal.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. 1. M. Soljacic and J. D. Joannopoulos, �??Enhancement of nonlinear effects using photonic crystals,�?? Nature Material 3, 211-219 (2004).
    [CrossRef]
  2. Berger, V., �??Non linear photonic crystals,�?? Phys. Rev. Lett. 81, 4136�??4139 (1998).
    [CrossRef]
  3. Broderick, N. G. R.,Ross, G. W., Offerhaus, H. L., Richardson, D. J. & Hanna, D. C., �??Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,�?? Phys. Rev. Lett. 84, 4345�??4348 (2000).
    [CrossRef] [PubMed]
  4. M. M. Fejer, G. A. Magel, D.H. Junt, and R.L. Byer, �??Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,�?? IEEE J. of Quantum Electronics, 28 No. 11, 2631-2654 (1992).
    [CrossRef]
  5. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitcheli, and L. W. Hollberg, �??Difference-frequency generation in PPLN at 4.25 µm: an anlysis of sensitivity limits for DFG spectrometers,�?? Appl. Phys. B 70, 747�??50 (2000).
    [CrossRef]
  6. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, �??PPLN waveguide for quantum communication,�?? Eur. Phys. J. D 18, 155-160 (2002).
    [CrossRef]
  7. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, �??Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,�?? Phys. Rev. Lett. 92, 043903 (2004).
    [CrossRef] [PubMed]
  8. V. Gopalan and M.C. Gupta, �??Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence,�?? Appl. Phys. Lett. 68, 888 (1996).
    [CrossRef]
  9. M. Muller, E. Soergel, M.C. Wengler, K. Buse, �??Light deflection from ferroelectric domain boundaries,�?? Appl. Phys. B 78, 367�??370 (2004).
    [CrossRef]
  10. V. Gopalan and M.C. Gupta, �??Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,�?? J. Appl. Phys. 80, 6099 (1996).
    [CrossRef]
  11. V. Gopalan, T. Mitchell, Y. Furukawa, and K. Kitamura, �??The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,�?? Appl. Phys. Lett. 72, 1981 (1998).
    [CrossRef]
  12. S. Kim and V. Gopalan, K. Kitamura, and Y. Furukawa, �??Domain reversal and nonstoichiometry in lithium tantalite,�?? J. Appl. Phys. 90, 2949 (2001).
    [CrossRef]
  13. J.H.Ro et al., �??Non stoichiometric defect effect on coercive field in lithium niobate crystals,�?? Ferroelectrics 269, 231-236 (2002).
  14. A. V. Yatsenko, E. N. Ivanova, and N. A. Sergeev, �??NMR study of intrinsic defect in congruent LiNbO3. 1. �??Unoverlapping�?? defects,�?? Physica B 240, 254 (1997).
    [CrossRef]
  15. V. Grachev and G. Malovichko, �??EPR, ENDOR, and optical-absorption study of Cr3+ centers substituting for Niobium in Li-rich lithium niobate crystals,�?? Phys. Rev. B, 62, 7779-7790 (2000).
    [CrossRef]
  16. Kim S., Gopalan V., and Steiner B., �??Direct x-ray synchrotron imaging of strains at 180 degree domain walls in congruent LiNbO3 and LiTaO3 crystals,�?? Appl. Phys. Lett. 77, 2051-2053 (2000).
    [CrossRef]
  17. Hu, Z. W. et al. �??Phase mapping of periodically domain-inverted LiNbO3 with coherent X-rays,�?? Nature 392, 690-693 (1998).
    [CrossRef]
  18. P.Rejmankova-Pernot et al. �??Phase Retrieval by Combined Bragg and Fresnel X-ray Diffraction Imaging,�?? Phys. Rev. Lett. 81, 3435-3438 (1998).
    [CrossRef]
  19. R.C. Rogan, N. Tamura, G.A. Swift and E.Ustundag, �??Direct measurement of triaxial strain field around ferroelectric domains using x-ray microdiffraction,�?? Nature Material 2, 379-381 (2003).
    [CrossRef]
  20. H. Donneberg, S.M. Tomlinson, C.R.A. Catlow, and O.F. Schirmer, �??Computer-simulation studies of intrinsic defects in LiNbO3 crystals,�?? Phys. Rev. B 40, 11909 (1989).
    [CrossRef]
  21. N. Iyi, K. Kitamura, Y. Yajima, Y. Furukawa and M.Sato, �??Defect Structure Model of MgO-Doped LiNbO3,�?? Journal of Solid State Chemistry, 118, 148-152, (1995).
    [CrossRef]
  22. G. Malovichko, V. Grachev, O.Schirmer, �??Interrelation of intrinsic and extrinsic defect-congruent, stoichiometric, and regularly ordered lithium niobate,�?? Appl. Phys. B 68 785-793, (1999).
    [CrossRef]
  23. S.Kan, M. Sakamoto, Y. Okano, K. Hoshikawa, T. Fukuda, �??LN single crystal growth from Li-rich melts by the continuous charging and double crucible Cz methods,�?? J. Crystal Growth 128, 915-919, (1993).
    [CrossRef]
  24. K. Polgar, A. Peter, I. Foldvari, Z. Szaller, �??Structural defects in flux-grown stoichiometric LN single crystals,�?? J. Crystal Growth 218, 327-333,(2000).
    [CrossRef]
  25. M. de Angelis, P. Ferraro, S. Grilli, S. De Nicola, A. Finizio, M. Paturzo, and G. Pierattini, �??Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,�?? Appl. Phys. Lett. 85, 2785 (2004).
    [CrossRef]
  26. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini and R. Meucci, �??Whole optical wavefields reconstruction by digital holography,�?? Opt. Express 9, 294 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-294</a>
    [CrossRef] [PubMed]
  27. M. Park, K. Kitamura, K. Terabe, Y. Furukawa, Y. Ji, E. Suzuki �??Mechanical twinning in stoichiometric lithium niobate single crystal,�?? J. Crystal Growth 180 101-104, (1997).
    [CrossRef]
  28. S. Grilli et al. �??In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography,�?? Opt. Express 12, 1832-1842 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1832">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1832</a>
    [CrossRef] [PubMed]
  29. M. Paturzo et al., �??Investigation of electric internal field in congruent LiNbO3 by electro-optic effect,�?? Appl. Phys. Lett. 85, 5652 (2004).
    [CrossRef]
  30. U. Hartwig, K. Peithmann, B. Sturman and K. Buse, �??Strong permanent reversible diffraction gratings in copper-doped lithium niobate crystals caused by a zero-electric-field photorefractive effect,�?? Appl. Phys. B 80, 227�??230 (2005).
    [CrossRef]

Appl. Phys. B

D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitcheli, and L. W. Hollberg, �??Difference-frequency generation in PPLN at 4.25 µm: an anlysis of sensitivity limits for DFG spectrometers,�?? Appl. Phys. B 70, 747�??50 (2000).
[CrossRef]

M. Muller, E. Soergel, M.C. Wengler, K. Buse, �??Light deflection from ferroelectric domain boundaries,�?? Appl. Phys. B 78, 367�??370 (2004).
[CrossRef]

G. Malovichko, V. Grachev, O.Schirmer, �??Interrelation of intrinsic and extrinsic defect-congruent, stoichiometric, and regularly ordered lithium niobate,�?? Appl. Phys. B 68 785-793, (1999).
[CrossRef]

U. Hartwig, K. Peithmann, B. Sturman and K. Buse, �??Strong permanent reversible diffraction gratings in copper-doped lithium niobate crystals caused by a zero-electric-field photorefractive effect,�?? Appl. Phys. B 80, 227�??230 (2005).
[CrossRef]

Appl. Phys. Lett.

M. Paturzo et al., �??Investigation of electric internal field in congruent LiNbO3 by electro-optic effect,�?? Appl. Phys. Lett. 85, 5652 (2004).
[CrossRef]

M. de Angelis, P. Ferraro, S. Grilli, S. De Nicola, A. Finizio, M. Paturzo, and G. Pierattini, �??Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,�?? Appl. Phys. Lett. 85, 2785 (2004).
[CrossRef]

V. Gopalan and M.C. Gupta, �??Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence,�?? Appl. Phys. Lett. 68, 888 (1996).
[CrossRef]

V. Gopalan, T. Mitchell, Y. Furukawa, and K. Kitamura, �??The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals,�?? Appl. Phys. Lett. 72, 1981 (1998).
[CrossRef]

Kim S., Gopalan V., and Steiner B., �??Direct x-ray synchrotron imaging of strains at 180 degree domain walls in congruent LiNbO3 and LiTaO3 crystals,�?? Appl. Phys. Lett. 77, 2051-2053 (2000).
[CrossRef]

Eur. Phys. J. D

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, �??PPLN waveguide for quantum communication,�?? Eur. Phys. J. D 18, 155-160 (2002).
[CrossRef]

Ferroelectrics

J.H.Ro et al., �??Non stoichiometric defect effect on coercive field in lithium niobate crystals,�?? Ferroelectrics 269, 231-236 (2002).

IEEE J. of Quantum Electronics

M. M. Fejer, G. A. Magel, D.H. Junt, and R.L. Byer, �??Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,�?? IEEE J. of Quantum Electronics, 28 No. 11, 2631-2654 (1992).
[CrossRef]

J. Appl. Phys.

V. Gopalan and M.C. Gupta, �??Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,�?? J. Appl. Phys. 80, 6099 (1996).
[CrossRef]

S. Kim and V. Gopalan, K. Kitamura, and Y. Furukawa, �??Domain reversal and nonstoichiometry in lithium tantalite,�?? J. Appl. Phys. 90, 2949 (2001).
[CrossRef]

J. Crystal Growth

M. Park, K. Kitamura, K. Terabe, Y. Furukawa, Y. Ji, E. Suzuki �??Mechanical twinning in stoichiometric lithium niobate single crystal,�?? J. Crystal Growth 180 101-104, (1997).
[CrossRef]

S.Kan, M. Sakamoto, Y. Okano, K. Hoshikawa, T. Fukuda, �??LN single crystal growth from Li-rich melts by the continuous charging and double crucible Cz methods,�?? J. Crystal Growth 128, 915-919, (1993).
[CrossRef]

K. Polgar, A. Peter, I. Foldvari, Z. Szaller, �??Structural defects in flux-grown stoichiometric LN single crystals,�?? J. Crystal Growth 218, 327-333,(2000).
[CrossRef]

Journal of Solid State Chemistry

N. Iyi, K. Kitamura, Y. Yajima, Y. Furukawa and M.Sato, �??Defect Structure Model of MgO-Doped LiNbO3,�?? Journal of Solid State Chemistry, 118, 148-152, (1995).
[CrossRef]

Nature

Hu, Z. W. et al. �??Phase mapping of periodically domain-inverted LiNbO3 with coherent X-rays,�?? Nature 392, 690-693 (1998).
[CrossRef]

Nature Material

R.C. Rogan, N. Tamura, G.A. Swift and E.Ustundag, �??Direct measurement of triaxial strain field around ferroelectric domains using x-ray microdiffraction,�?? Nature Material 2, 379-381 (2003).
[CrossRef]

1. M. Soljacic and J. D. Joannopoulos, �??Enhancement of nonlinear effects using photonic crystals,�?? Nature Material 3, 211-219 (2004).
[CrossRef]

Opt. Express

Phys. Rev. B

V. Grachev and G. Malovichko, �??EPR, ENDOR, and optical-absorption study of Cr3+ centers substituting for Niobium in Li-rich lithium niobate crystals,�?? Phys. Rev. B, 62, 7779-7790 (2000).
[CrossRef]

H. Donneberg, S.M. Tomlinson, C.R.A. Catlow, and O.F. Schirmer, �??Computer-simulation studies of intrinsic defects in LiNbO3 crystals,�?? Phys. Rev. B 40, 11909 (1989).
[CrossRef]

Phys. Rev. Lett.

P.Rejmankova-Pernot et al. �??Phase Retrieval by Combined Bragg and Fresnel X-ray Diffraction Imaging,�?? Phys. Rev. Lett. 81, 3435-3438 (1998).
[CrossRef]

Berger, V., �??Non linear photonic crystals,�?? Phys. Rev. Lett. 81, 4136�??4139 (1998).
[CrossRef]

Broderick, N. G. R.,Ross, G. W., Offerhaus, H. L., Richardson, D. J. & Hanna, D. C., �??Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,�?? Phys. Rev. Lett. 84, 4345�??4348 (2000).
[CrossRef] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, �??Nonlinear Optics and Crystalline Whispering Gallery Mode Cavities,�?? Phys. Rev. Lett. 92, 043903 (2004).
[CrossRef] [PubMed]

Physica B

A. V. Yatsenko, E. N. Ivanova, and N. A. Sergeev, �??NMR study of intrinsic defect in congruent LiNbO3. 1. �??Unoverlapping�?? defects,�?? Physica B 240, 254 (1997).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (560 KB)     
» Media 2: MOV (515 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Optical microscope image of a defect surrounded by an inverted hexagonally shaped domain, visualized by crossed polarizers. (b) Hexagonally poled zone (z+) clearly visible around a defect, after etching.

Fig. 2.
Fig. 2.

(a) In the optical phase retardation map, a null phase step is noticeable across the domain boundary (black line) between the reversed (B) and un-reversed (A) regions whereas a phase step is visible in proximity of defects. (b) (Upper portion) Close-up of the phase map in which a hexagonally shaped reversed area is evident around a defect. (Lower portion) Plot showing the phase profile along the dashed line.

Fig. 3.
Fig. 3.

(a) Phase map of the sample at fixed applied voltage (2.7 kV). A phase step is visible across the domain boundary between the reversed (B) and un-reversed (A) areas and also across reversed areas in proximity of defect. (b) Plot of the averaged phase on virgin A(∘) and poled B(Δ) areas as function of the applied voltage. No differences are noticed between the electro-optic behaviour of the two areas. (c) Phase map with higher magnification showing the poled zone around the defect (d) Plot of the averaged phase on A(∘) and B(Δ) areas versus the applied voltage. The asymmetric behaviour exhibited by the two regions is clearly visible.

Fig. 4.
Fig. 4.

(560 KB Movie 1-Dynamic evolution of phase retardation in the off-congruent sample. (Upper image) Domain walls either between the two reversed regions and around the defects are visible due to the electro-optic phase retardation. (Lower image) Temporal evolution of both external voltage and electro-optic phase retardations in the two reversed adjacent regions.

Fig. 5.
Fig. 5.

(515 KB Movie 2-Dynamic evolution of phase retardation in correspondence of a defect.(Upper left) Phase map recorded at higher resolution, showing the reversed zone around a defect while an external electric voltage (Upper right) is applied.(Lower left) Plot of the phase profile across the hexagonal pole zone around the defect.(Lower right) Phase versus voltage inside (red) and outside (blue) hexagonal area, respectively.

Metrics