Abstract

We have developed a depolarization technique to achieve polarization-insensitive wavelength conversion using four-wave mixing in an optical fiber. A maximum conversion efficiency of -11.79 dB was achieved over a 3 dB bandwidth of 26 nm in a 100-m-long dispersion-flattened photonic crystal fiber. The polarization-dependent conversion efficiency was less than 0.38 dB and the measured power penalty for a 10 Gbit/s NRZ signal was 1.9 dB. The relation between the conversion efficiency and the degree of polarization of the pump was also formulated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro,, D. J. Richardson, �??Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,�?? IEEE Photon. Technol. Lett., 15, 440-442, (2003)
    [CrossRef]
  2. K. P. Hansen, J. R. Folkenberg, C. Peucheret, A. Bjarklev, �??Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,�?? paper PD2 - 1-3, OFC 2003, Atlanta.
  3. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, �??Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,�?? IEEE Photon. Technol. Lett., 17, 624-626, (2005)
    [CrossRef]
  4. K. Inoue, �??Polarization effect on four-wave mixing efficiency in a single mode fiber,�?? IEEE J. Quantum Electron., 28, 883-894, (1992)
    [CrossRef]
  5. R. Paiella, G. Hunziker, J. H. Zhou etc, �??Polarization properties of four-wave mixing in strained semiconductor optical amplifiers,�?? IEEE Photon. Technol. Lett., 8, 773-775, (1996)
    [CrossRef]
  6. T. Hasegawa. K. Inoue, and K. Oda �??Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,�?? IEEE Photon. Technol. Lett., 5, 947-949, (1993)
    [CrossRef]
  7. K. Takada, K. Okamoto and J. Noda �??New fiber-optic depolarizer,�?? IEEE J. Lightwave Technol., LT-4, (1986)
  8. S. K. Korotky, P.B. Hansen, L. Eskildsen , and J.J. Veselka, �??Efficient phase modulation scheme for suppressing stimulated Brillouin scattering,�?? paper WD2-1, IOOC�??95, Hong Kong

IEEE J. Lightwave Technol. (1)

K. Takada, K. Okamoto and J. Noda �??New fiber-optic depolarizer,�?? IEEE J. Lightwave Technol., LT-4, (1986)

IEEE J. Quantum Electron. (1)

K. Inoue, �??Polarization effect on four-wave mixing efficiency in a single mode fiber,�?? IEEE J. Quantum Electron., 28, 883-894, (1992)
[CrossRef]

IEEE Photon. Technol. Lett. (4)

R. Paiella, G. Hunziker, J. H. Zhou etc, �??Polarization properties of four-wave mixing in strained semiconductor optical amplifiers,�?? IEEE Photon. Technol. Lett., 8, 773-775, (1996)
[CrossRef]

T. Hasegawa. K. Inoue, and K. Oda �??Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,�?? IEEE Photon. Technol. Lett., 5, 947-949, (1993)
[CrossRef]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro,, D. J. Richardson, �??Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,�?? IEEE Photon. Technol. Lett., 15, 440-442, (2003)
[CrossRef]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, �??Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,�?? IEEE Photon. Technol. Lett., 17, 624-626, (2005)
[CrossRef]

IOOC (1)

S. K. Korotky, P.B. Hansen, L. Eskildsen , and J.J. Veselka, �??Efficient phase modulation scheme for suppressing stimulated Brillouin scattering,�?? paper WD2-1, IOOC�??95, Hong Kong

OFC (1)

K. P. Hansen, J. R. Folkenberg, C. Peucheret, A. Bjarklev, �??Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,�?? paper PD2 - 1-3, OFC 2003, Atlanta.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the depolarizer.

Fig. 2.
Fig. 2.

Schematic of wavelength conversion. TLS: Tunable laser source. PC: Polarization controller. PM: Phase modulator. DEP: Depolarizer. EDFA: Erbium doped fiber amplifier. TBF: Optical tunable band pass filter. ATT: Tunable attenuator. OSA: Optical spectrum analyzer. BERT: bit-error-rate tester.

Fig. 3.
Fig. 3.

Reflected power versus the launched pump power.

Fig. 4.
Fig. 4.

(a) Conversion efficiency versus the converted signal wavelength when the pump wavelength was varied. (b) Conversion efficiency versus the converted signal wavelength when the input signal wavelength was varied.

Fig. 5.
Fig. 5.

Relative variation of the conversion efficiency versus the signal polarization angle.

Fig. 6.
Fig. 6.

BER versus the received optical power.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

L = L coh n = λ 2 n Δ λ ,
E ̂ FWM = κ [ E ̂ P · E ̂ S * ] E ̂ P
E ̂ P = E P 1 e ̂ 1 + E P 2 e ̂ 2
[ e ̂ 1 · e ̂ 2 * ] = 0
[ e ̂ 1 · e ̂ 1 * ] = [ e ̂ 2 · e ̂ 2 * ] = 1
E ̂ S = E S 1 e ̂ 1 + E S 2 e ̂ 2
E ̂ FWM = κ [ ( E P 1 2 E S 1 * + E P 1 E P 2 E S 2 * ) e ̂ 1 + ( E P 2 2 E S 2 * + E P 1 E P 2 E S 1 * ) e ̂ 2 ]
P P 1 = E P 1 2 = E P 1 E P 1 * ,
P P 2 = E P 2 2 = E P 2 E P 2 * ,
P S 1 = E S 1 2 = E S 1 E S 1 * = P S cos 2 ( θ )
P S 2 = E S 2 2 = E S 2 E S 2 * = P S sin 2 ( θ ) ,
P FWM = E ̂ FWM 2 = E FWM E FWM * = κ 2 ( P P 1 + P P 2 ) ( P P 1 P S 1 + P P 2 P S 2 )
+ 2 ( P P 1 + P P 2 ) E P 1 E P 2 * E S 1 * E S 2 cos ( ϕ )
P FWM = κ 2 ( P P 1 + P P 2 ) ( P P 1 P S 1 + P P 2 P S 2 )
DOP = P P 1 P P 2 P P 1 + P P 2
P FWM = 1 2 κ 2 P P 2 P S ( 1 + DOP cos ( 2 θ ) )
Δ η dB = 10 log ( 1 + DOP 1 DOP )

Metrics