Abstract

We report on transient laser action during the photopolymerization process in organic thin films of acrylate monomers doped with a laser dye. The emission spectrum was monitored over a period of time in the direction orthogonal to the incident laser beam which is kept at a constant intensity during the experiments. The emission spectra display the signature of laser action after a certain amount of polymerization. We have also recorded the intensity of fluorescence as well as of the amplified stimulated emission (ASE) using a photodiode. Our results confirmed that all the emission is guided by an increase of the refractive index resulting from the photopolymerization process. The spatial fluctuations in the density of the material are thought to act as micro-cavities leading to a random laser effect.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Campbell, D.N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53�??56 (2000).
    [CrossRef] [PubMed]
  2. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, and H. Z. Wang, Y. K. Pang and W. Y. Tam, �??Three-dimensional photonic crystals fabricated by visible light holographic lithography,�?? Appl. Phys. Lett. 82, 2212-2214 (2003).
    [CrossRef]
  3. H. B. Sun, S. Matsuo, and H. Misawa, �??Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,�?? Appl. Phys. Lett. 74, 786 �?? 788 (1999).
    [CrossRef]
  4. K. Kaneko, H.B. Sun, X.M. Duan, and S. Kawata, �??Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication,�?? Appl. Phys. Lett. 83, 2091-2093 (2003).
    [CrossRef]
  5. S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, K. D. Dorkenoo, �??One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,�?? Appl. Phys. Lett. 86, 211118-1 (2005).
    [CrossRef]
  6. K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, H. Leblond, �??Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,�?? Phys. Rev. Lett. 93, 143905(4) (2004).
    [CrossRef]
  7. K. D. Dorkenoo, O. Crégut, Alain Fort, �??Organic Plastic Laser in Holographic materials by Photopolymerization,�?? Appl. Phys. Lett. 84, 2733-2735 (2004).
    [CrossRef]
  8. F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, and G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, �??Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,�?? Appl. Phys. Lett. 84, 4454-4456 (2004).
    [CrossRef]

Appl. Phys. Lett. (6)

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, and H. Z. Wang, Y. K. Pang and W. Y. Tam, �??Three-dimensional photonic crystals fabricated by visible light holographic lithography,�?? Appl. Phys. Lett. 82, 2212-2214 (2003).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, �??Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,�?? Appl. Phys. Lett. 74, 786 �?? 788 (1999).
[CrossRef]

K. Kaneko, H.B. Sun, X.M. Duan, and S. Kawata, �??Submicron diamond-lattice photonic crystals produced by two-photon laser nanofabrication,�?? Appl. Phys. Lett. 83, 2091-2093 (2003).
[CrossRef]

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, K. D. Dorkenoo, �??One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,�?? Appl. Phys. Lett. 86, 211118-1 (2005).
[CrossRef]

K. D. Dorkenoo, O. Crégut, Alain Fort, �??Organic Plastic Laser in Holographic materials by Photopolymerization,�?? Appl. Phys. Lett. 84, 2733-2735 (2004).
[CrossRef]

F. Quochi, F. Cordella, R. Orru, J. E. Communal, P. Verzeroli, A. Mura, and G. Bongiovanni, A. Andreev, H. Sitter, and N. S. Sariciftci, �??Random laser action in self-organized para-sexiphenyl nanofibers grown by hot-wall epitaxy,�?? Appl. Phys. Lett. 84, 4454-4456 (2004).
[CrossRef]

Nature (1)

M. Campbell, D.N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53�??56 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

K. D. Dorkenoo, F. Gillot, O. Crégut, Y. Sonnefraud, A. Fort, H. Leblond, �??Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation,�?? Phys. Rev. Lett. 93, 143905(4) (2004).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (1391 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Evolution of the absorption spectrum with (a) or without (b) DCM during the photopolymerization process.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Evolution of the intensity of the emission spectrum (inset: zoom of short time)

Fig. 4.
Fig. 4.

Evolution of the emission spectrum. The blue curve (a) is the fluorescence emission, the orange and green curves (b) are the randomly multi-peaked laser emission (inset: typical CCD image). The distance between two peaks is 1.5 nm, corresponding to a FSR of 1.5 GHz. The red curve (c) is the shifted ASE spectrum.

Fig. 5.
Fig. 5.

(a) 2D synthesized image of evolution of the emission spectrum. (b) evolution of the spectral intensity (integrated in the ASE spectrum window).

Fig. 6.
Fig. 6.

(Quicktime movie 1.35 MB) Laser emission during the photopolymerization process : the spectral intensity range between 590–630 nm (top), spectral evolution of the ASE and laser emission (left), the real time evolution of the laser spot (right, shown by blue arrow).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( t ) 1 = α m M ( t ) + α p P ( t )

Metrics