Abstract

A novel integrated TM-pass waveguide polarizer with a subwavelength-wide slot is introduced and theoretically analyzed. With a proper design of the slot, the waveguide can be used as a single polarization waveguide to guide only TM polarization modes of the light signal. With 26 µm length of this TM-pass polarizer, our computer simulations predict the insertion loss of 0.54 dB for the TM polarization mode with the extinction ratio of 20.3 dB at the wavelength of 1.55 µm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. M. Garmire and H. Stoll, �??Propagation losses in metal-film-substrate optical waveguide,�?? IEEE J. Quantum Electron. 8, 763-6 (1972).
    [CrossRef]
  2. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, �??Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,�?? J. Lightwave Technol. 8, 538-44 (1990).
    [CrossRef]
  3. T. Nakano, K. Baba, and M. Miyagi, �??Insertion loss and extinction ratio of a surface plasmon-polariton polarizer: theoretical analysis,�?? J. Opt. Soc. Ame. B 11, 2030-5 (1994).
    [CrossRef]
  4. C-H Chen, L. Wang, �??Design of Finite-length metal-clad optical waveguide polarizer,�?? IEEE J. Quantum Electron. 34, 1089-97 (1998).
    [CrossRef]
  5. O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, �??Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,�?? Appl. Phys. Lett. 71, 750-2 (1997).
    [CrossRef]
  6. A. Morand, C. Shanchez-Perez. P. Benech, S. Tedjini, and D. Bosc, �??Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,�?? IEEE Photonics Technol. Lett. 10, 1599-601 (1998).
    [CrossRef]
  7. M. J. BJ. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, �??Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography,�?? J. Bac. Sci. Technol. B. 17, 2957-60 (1999).
    [CrossRef]
  8. M.A. Khan and H.A. Jamid, �??Analysis of TM-pass reflection mode optical polarizer using method of lines,�?? in Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits, and Systems (Institute of Electrical and Electronics Engineers, New York, 2003). IEEE. Part Vol.2, pp. 555-8.
    [CrossRef]
  9. M. J. Bloemer, and J. W. Haus, �??Broadband waveguide polarizers based on the anisotropic optical constants of nanocomposite films,�?? J. Lightwave Technol. 14, 1534-1540 (1996).
    [CrossRef]
  10. S.K. Kim, K. Geary, D. H. Chang, H.R. Fetterman, H. Zhang, C. Zhang, C. Wang, and W.H. Steier, �??TMpass polymer modulators with poling-induced waveguides and self-aligned electrodes,�?? Electron. Lett. 39, 721-2 (2003).
    [CrossRef]
  11. K. Baka, T. Iden, and M. Miyagi, �??TM-pass glass waveguide polarizer with periodic multilayer cladding overlaid with isotropic dielectric media,�?? Electron. Lett. 36, 1461-2 (2000).
    [CrossRef]
  12. S.S. Lee, S. Garner, A. Chen, V. Chuyanov, W. H. Steier, S. W. Ahn, and S-Y Shin, �??TM-pass polarizer based on a photobleaching-induced waveguide in polymers,�?? IEEE Photonics Technol Lett. 10, 836-8 (1998).
    [CrossRef]
  13. H.A. Haus, W.P. Huang, and A.W. Snyder, �??Coupled-mode formulations,�?? Opt. Lett. 14, 1222-4 (1989).
    [CrossRef] [PubMed]
  14. P. L. Liu, and B. J. Lin, �??Study of form birefringence in waveguide devices using the semivectorial beam propagation method,�?? IEEE Photonics Technol. Lett. 3, 913-15 (1991).
    [CrossRef]
  15. V. R. Almeida, Qianfan Xu, C. A. Barrios and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-11 (2004).
    [CrossRef] [PubMed]
  16. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  17. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (J. Wiley, New York, 2001).
  18. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

Appl. Phys. Lett.

O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, �??Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,�?? Appl. Phys. Lett. 71, 750-2 (1997).
[CrossRef]

Electron. Lett.

S.K. Kim, K. Geary, D. H. Chang, H.R. Fetterman, H. Zhang, C. Zhang, C. Wang, and W.H. Steier, �??TMpass polymer modulators with poling-induced waveguides and self-aligned electrodes,�?? Electron. Lett. 39, 721-2 (2003).
[CrossRef]

K. Baka, T. Iden, and M. Miyagi, �??TM-pass glass waveguide polarizer with periodic multilayer cladding overlaid with isotropic dielectric media,�?? Electron. Lett. 36, 1461-2 (2000).
[CrossRef]

IEEE J. Quantum Electron

C-H Chen, L. Wang, �??Design of Finite-length metal-clad optical waveguide polarizer,�?? IEEE J. Quantum Electron. 34, 1089-97 (1998).
[CrossRef]

IEEE J. Quantum Electron.

E. M. Garmire and H. Stoll, �??Propagation losses in metal-film-substrate optical waveguide,�?? IEEE J. Quantum Electron. 8, 763-6 (1972).
[CrossRef]

IEEE Photonics Technol Lett.

S.S. Lee, S. Garner, A. Chen, V. Chuyanov, W. H. Steier, S. W. Ahn, and S-Y Shin, �??TM-pass polarizer based on a photobleaching-induced waveguide in polymers,�?? IEEE Photonics Technol Lett. 10, 836-8 (1998).
[CrossRef]

IEEE Photonics Technol. Lett.

P. L. Liu, and B. J. Lin, �??Study of form birefringence in waveguide devices using the semivectorial beam propagation method,�?? IEEE Photonics Technol. Lett. 3, 913-15 (1991).
[CrossRef]

A. Morand, C. Shanchez-Perez. P. Benech, S. Tedjini, and D. Bosc, �??Integrated optical waveguide polarizer on glass with a birefringent polymer overlay,�?? IEEE Photonics Technol. Lett. 10, 1599-601 (1998).
[CrossRef]

J. Bac. Sci. Technol. B.

M. J. BJ. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, �??Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography,�?? J. Bac. Sci. Technol. B. 17, 2957-60 (1999).
[CrossRef]

J. Lightwave Technol.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, �??Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,�?? J. Lightwave Technol. 8, 538-44 (1990).
[CrossRef]

M. J. Bloemer, and J. W. Haus, �??Broadband waveguide polarizers based on the anisotropic optical constants of nanocomposite films,�?? J. Lightwave Technol. 14, 1534-1540 (1996).
[CrossRef]

J. Opt. Soc. Ame. B

T. Nakano, K. Baba, and M. Miyagi, �??Insertion loss and extinction ratio of a surface plasmon-polariton polarizer: theoretical analysis,�?? J. Opt. Soc. Ame. B 11, 2030-5 (1994).
[CrossRef]

Opt. Lett

H.A. Haus, W.P. Huang, and A.W. Snyder, �??Coupled-mode formulations,�?? Opt. Lett. 14, 1222-4 (1989).
[CrossRef] [PubMed]

Opt. Lett.

Other

A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrödinger Equation (J. Wiley, New York, 2001).

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).

M.A. Khan and H.A. Jamid, �??Analysis of TM-pass reflection mode optical polarizer using method of lines,�?? in Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits, and Systems (Institute of Electrical and Electronics Engineers, New York, 2003). IEEE. Part Vol.2, pp. 555-8.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The schematic structure of the TM-pass polarizer. The input and output waveguides are ridge waveguides with width W and height H. A TM-pass SP waveguide is a ridge waveguide with the same size of input and output. A slot filled with air is centered at the SP waveguide with width d and length L. Y-branch mode-conversion waveguides are between input/output and SP waveguides with the length of L1.

Fig. 2.
Fig. 2.

Effective indices for the lowest TE-like (dashed line) and TM-like (solid line) modes of the SP waveguide versus different separation distance d. The inset shows the cross-section of the simulated SP waveguide.

Fig. 3.
Fig. 3.

Ey field profiles of the fundamental TM modes of the input waveguide (left) and the SP waveguide with d=0.1 µm (right). The white dashed line shows the cross section of waveguides.

Fig. 4.
Fig. 4.

Power loss of the TM00 mode incidence wave with variations of the length of the Y-branch waveguide L1.

Fig. 5.
Fig. 5.

Field distributions of the incidence waves with TE (left) and TM (right) polarizations propagating in the waveguide polarizer.

Fig. 6.
Fig. 6.

Performance of the proposed TM polarizer with different length of the SP waveguide L. The dashed line is the insertion loss of the whole device and the solid line is the extinction ratio.

Fig. 7.
Fig. 7.

(a) Insertion loss and extinction ratio of the polarizer with variations of the separation distance d. (b) Insertion loss and extinction ratio as a function of wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = E in ( x , y ) E out ( x , y ) dxdy 2 E in ( x , y ) 2 dxdy E out ( x , y ) 2 dxdy

Metrics