Abstract

We demonstrate a promising method to fabricate large-area periodic structures with desired defects by using the combination of multiple-exposure two-beam interference and mask-photolithography techniques. Multiple-exposure of two-beam interference pattern at 325 nm into a positive AZ-4620 (or a negative SU-8) photopolymerizable photoresist is used to form a square and hexagonal two-dimensional periodic structures. Desired defects are introduced in these structures by irradiating the sample with one beam of the same laser through a mask in which the design of defects is patterned. A 1cm×1cm periodic structures with the lattice constant as small as 365nm embedding several kinds of defect, such as waveguide or Mach-Zehnder, was obtained by employing this combination technique. It shows that the proposed combination technique is useful for mass production of photonic crystal optoelectronics devices.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, �??Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths,�?? Science 289, 604-606 (2000).
    [CrossRef] [PubMed]
  4. S. Fan, P. Villeneuve, J. D. Joannopoulos, H. Haus, �??Channel drop filters in photonic crystals,�?? Opt. Express 3, 4-11 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4</a>
    [CrossRef] [PubMed]
  5. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937-1939 (2000).
    [CrossRef]
  6. S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, �??Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,�?? Science 282, 274-276 (1998).
    [CrossRef] [PubMed]
  7. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, �??Photonic crystals: putting a new twist on light,�?? Nature 386, 143-149 (1997).
    [CrossRef]
  8. T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, D. Deppe, �??High quality two-dimensional photonic crystal slab cavities,�?? Appl. Phys. Lett. 79, 4289-4291 (2001).
    [CrossRef]
  9. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, �??Experimental demonstration of a high quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915-1917 (2003).
    [CrossRef]
  10. W. Lee, S. A. Pruzinsky, P. V. Braun, �??Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,�?? Adv. Mater. 14, 271-274 (2002).
    [CrossRef]
  11. Y. -H. Ye, S. Badilescu, V. -V. Truong, �??Large-scale ordered macroporous SiO2 thin films by a template-directed method,�?? Appl. Phys. Lett. 81, 616-618 (2002).
    [CrossRef]
  12. S. C. Kitson, W. L. Barnes, J. R. Sambles, �?? The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,�?? IEEE Photon. Technol. Lett. 8, 1662-1664 (1996).
    [CrossRef]
  13. V. Berger, O. Gauthier-Lafaye, E. Costard, �??Photonic band gaps and holography,�?? J. Appl. Phys. 82, 60-64 (1997).
    [CrossRef]
  14. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  15. S. Shoji, S. Kawata, �??Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,�?? Appl. Phys. Lett. 76, 2668-2670 (2000).
    [CrossRef]
  16. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, M. Wegener, �??Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,�?? Appl. Phys. Lett. 82, 1284-1286 (2003).
    [CrossRef]
  17. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, H. Misawa, �??Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,�?? Appl. Phys. Lett. 82, 2758-2760 (2003).
    [CrossRef]
  18. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, S. Yang, �??Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,�?? Appl. Phys. Lett. 84, 5434-5436 (2004).
    [CrossRef]
  19. H. B. Sun, S. Matsuo, H. Misawa, �??Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,�?? Appl. Phys. Lett. 74, 786-788 (1999).
    [CrossRef]
  20. M. Straub, M. Gu, �??Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,�?? Opt. Lett. 27, 1824-1826 (2002).
    [CrossRef]
  21. V. Mizeikis, K. K. Seet, S. Juodkazis, H. Misawa, �??Three-dimensional woodpile photonic crystal templates for the infrared spectral range,�?? Opt. Lett. 29, 2061-2063 (2004).
    [CrossRef] [PubMed]
  22. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, C. M. Soukoulis, �??Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,�?? Nature Mater. 3, 444-447 (2004).
    [CrossRef]
  23. H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, H. Misawa, �??Microcavities in polymeric photonic crystals,�?? Appl. Phys. Lett. 79, 1-3 (2001).
    [CrossRef]
  24. L. Pang, W. Nakagawa, Y. Fainman:, �??Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,�?? Appl. Opt. 42, 5450-5456 (2003).
    [CrossRef] [PubMed]
  25. C. Moormann, J. Bolten, H. Kurz, �??Spatial phase-locked combination lithography for photonic crystals devices,�?? Microelectron. Engineer. 73-74, 417-422 (2004).
    [CrossRef]
  26. L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, N. F. van Hulst, �??Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,�?? Adv. Mater. 13, 1551-1554 (2001).
    [CrossRef]
  27. H. B. Sun, A. Nakamura, K. Kaneko, S. Shoji, S. Kawata, �??Direct laser writing defects in holographic lithography-created photonic lattices,�?? Opt. Lett. 30, 881-883 (2005).
    [CrossRef] [PubMed]
  28. X. Yang, L. Cai, Q. Liu, �??Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures,�?? Appl. Opt. 32, 6894-6900 (2002).
    [CrossRef]
  29. H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, H. Z. Wang, �??Effects of polarization on laser holography for microstructure fabrication,�?? Phys. Rev. E 67, 056619 (2003).
    [CrossRef]
  30. I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, T. E. Mallouk, �??Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,�?? Appl. Phys. Lett. 79, 3392-3394 (2001).
    [CrossRef]
  31. L. Prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, L. Kuipers, �??Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,�?? Nanotechnology 15, 639-642 (2004).
    [CrossRef]

Adv. Mater.

W. Lee, S. A. Pruzinsky, P. V. Braun, �??Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,�?? Adv. Mater. 14, 271-274 (2002).
[CrossRef]

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, N. F. van Hulst, �??Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,�?? Adv. Mater. 13, 1551-1554 (2001).
[CrossRef]

Appl. Opt.

X. Yang, L. Cai, Q. Liu, �??Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures,�?? Appl. Opt. 32, 6894-6900 (2002).
[CrossRef]

L. Pang, W. Nakagawa, Y. Fainman:, �??Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,�?? Appl. Opt. 42, 5450-5456 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett.

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, H. Misawa, �??Microcavities in polymeric photonic crystals,�?? Appl. Phys. Lett. 79, 1-3 (2001).
[CrossRef]

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, T. E. Mallouk, �??Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,�?? Appl. Phys. Lett. 79, 3392-3394 (2001).
[CrossRef]

Y. -H. Ye, S. Badilescu, V. -V. Truong, �??Large-scale ordered macroporous SiO2 thin films by a template-directed method,�?? Appl. Phys. Lett. 81, 616-618 (2002).
[CrossRef]

S. Shoji, S. Kawata, �??Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,�?? Appl. Phys. Lett. 76, 2668-2670 (2000).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, M. Wegener, �??Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,�?? Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, H. Misawa, �??Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,�?? Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, S. Yang, �??Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,�?? Appl. Phys. Lett. 84, 5434-5436 (2004).
[CrossRef]

H. B. Sun, S. Matsuo, H. Misawa, �??Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,�?? Appl. Phys. Lett. 74, 786-788 (1999).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937-1939 (2000).
[CrossRef]

T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, D. Deppe, �??High quality two-dimensional photonic crystal slab cavities,�?? Appl. Phys. Lett. 79, 4289-4291 (2001).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, �??Experimental demonstration of a high quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915-1917 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

S. C. Kitson, W. L. Barnes, J. R. Sambles, �?? The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,�?? IEEE Photon. Technol. Lett. 8, 1662-1664 (1996).
[CrossRef]

J. Appl. Phys.

V. Berger, O. Gauthier-Lafaye, E. Costard, �??Photonic band gaps and holography,�?? J. Appl. Phys. 82, 60-64 (1997).
[CrossRef]

Microelectron. Engineer.

C. Moormann, J. Bolten, H. Kurz, �??Spatial phase-locked combination lithography for photonic crystals devices,�?? Microelectron. Engineer. 73-74, 417-422 (2004).
[CrossRef]

Nanotechnology

L. Prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, L. Kuipers, �??Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,�?? Nanotechnology 15, 639-642 (2004).
[CrossRef]

Nature

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, S. Fan, �??Photonic crystals: putting a new twist on light,�?? Nature 386, 143-149 (1997).
[CrossRef]

Nature Mater.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, C. M. Soukoulis, �??Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,�?? Nature Mater. 3, 444-447 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, H. Z. Wang, �??Effects of polarization on laser holography for microstructure fabrication,�?? Phys. Rev. E 67, 056619 (2003).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Science

S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, �??Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths,�?? Science 289, 604-606 (2000).
[CrossRef] [PubMed]

S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, �??Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,�?? Science 282, 274-276 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of experimental setup: The laser beam is extended by two lenses L1 and L2; Three beams, 1, 2, and 3, of the same profile, polarization, and intensity are selected by a triple-iris; Beams 1 and 3 are used to make 2D periodic structures by means of interference, and beam 2 is used to irradiate the sample through a mask.

Fig. 2.
Fig. 2.

Calculated light intensity distribution of multiple-exposure of two-beam interference pattern. (a) Double-exposure at α=0° and 90°, (b) double-exposure at α=0° and 60°, (c) triple-exposure at α=-60°, 0° and 60°.

Fig. 3.
Fig. 3.

AFM images of 2D periodic structures. (a): hexagonal structure obtained with 1s-exposure time. (b) and (c): square structures obtained with 1s- and 2s-exposure time, respectively. The lattice constant, Λ=3 µm (θ=3.1°).

Fig. 4.
Fig. 4.

AFM images of 2D periodic structures embedding defects. The exposure condition for periodic structures is same as in Fig. 3(a)(b) and the defects are obtained with 5s-exposure time. In (b) and (c): the line defects are oriented at 0° and at 45° with respect to the direction of square structures, respectively.

Fig. 5.
Fig. 5.

AFM images of 2D periodic structures. (a) large scale and (b) zoom in. The period of structure is equal to 365 nm (θ=300).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I α = E 1 α + E 3 α 2 ,
E 1 α , 3 α = E 10 , 30 cos [ k z cos θ ± k x sin θ cos α ± k y sin θ sin α ω t ] ,
Λ = λ 2 sin θ ,
I multiple exp osure = i I α i ,

Metrics