Abstract

We demonstrate a promising method to fabricate large-area periodic structures with desired defects by using the combination of multiple-exposure two-beam interference and mask-photolithography techniques. Multiple-exposure of two-beam interference pattern at 325 nm into a positive AZ-4620 (or a negative SU-8) photopolymerizable photoresist is used to form a square and hexagonal two-dimensional periodic structures. Desired defects are introduced in these structures by irradiating the sample with one beam of the same laser through a mask in which the design of defects is patterned. A 1cm×1cm periodic structures with the lattice constant as small as 365nm embedding several kinds of defect, such as waveguide or Mach-Zehnder, was obtained by employing this combination technique. It shows that the proposed combination technique is useful for mass production of photonic crystal optoelectronics devices.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths,” Science 289, 604–606 (2000).
    [CrossRef] [PubMed]
  4. S. Fan, P. Villeneuve, J. D. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4
    [CrossRef] [PubMed]
  5. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
    [CrossRef]
  6. S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
    [CrossRef] [PubMed]
  7. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  8. T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001).
    [CrossRef]
  9. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
    [CrossRef]
  10. W. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
    [CrossRef]
  11. Y. -H. Ye, S. Badilescu, and V. -V. Truong, “Large-scale ordered macroporous SiO2 thin films by a template-directed method,” Appl. Phys. Lett. 81, 616–618 (2002).
    [CrossRef]
  12. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
    [CrossRef]
  13. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
    [CrossRef]
  14. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
    [CrossRef] [PubMed]
  15. S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
    [CrossRef]
  16. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
    [CrossRef]
  17. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
    [CrossRef]
  18. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
    [CrossRef]
  19. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
    [CrossRef]
  20. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
    [CrossRef]
  21. V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for the infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
    [CrossRef] [PubMed]
  22. M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
    [CrossRef]
  23. H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
    [CrossRef]
  24. L. Pang, W. Nakagawa, and Y. Fainman:, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” Appl. Opt. 42, 5450–5456 (2003).
    [CrossRef] [PubMed]
  25. C. Moormann, J. Bolten, and H. Kurz, “Spatial phase-locked combination lithography for photonic crystals devices,” Microelectron. Engineer. 73–74, 417–422 (2004).
    [CrossRef]
  26. L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
    [CrossRef]
  27. H. B. Sun, A. Nakamura, K. Kaneko, S. Shoji, and S. Kawata, “Direct laser writing defects in holographic lithography-created photonic lattices,” Opt. Lett. 30, 881–883 (2005).
    [CrossRef] [PubMed]
  28. X. Yang, L. Cai, and Q. Liu, “Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures,” Appl. Opt. 32, 6894–6900 (2002).
    [CrossRef]
  29. H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, “Effects of polarization on laser holography for microstructure fabrication,” Phys. Rev. E 67, 056619 (2003).
    [CrossRef]
  30. I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
    [CrossRef]
  31. L. prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology 15, 639–642 (2004).
    [CrossRef]

2005 (1)

2004 (5)

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for the infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[CrossRef] [PubMed]

L. prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology 15, 639–642 (2004).
[CrossRef]

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

C. Moormann, J. Bolten, and H. Kurz, “Spatial phase-locked combination lithography for photonic crystals devices,” Microelectron. Engineer. 73–74, 417–422 (2004).
[CrossRef]

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

2003 (5)

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, “Effects of polarization on laser holography for microstructure fabrication,” Phys. Rev. E 67, 056619 (2003).
[CrossRef]

L. Pang, W. Nakagawa, and Y. Fainman:, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” Appl. Opt. 42, 5450–5456 (2003).
[CrossRef] [PubMed]

2002 (4)

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002).
[CrossRef]

X. Yang, L. Cai, and Q. Liu, “Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures,” Appl. Opt. 32, 6894–6900 (2002).
[CrossRef]

W. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
[CrossRef]

Y. -H. Ye, S. Badilescu, and V. -V. Truong, “Large-scale ordered macroporous SiO2 thin films by a template-directed method,” Appl. Phys. Lett. 81, 616–618 (2002).
[CrossRef]

2001 (4)

T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001).
[CrossRef]

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
[CrossRef]

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
[CrossRef]

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

2000 (4)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

1999 (1)

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[CrossRef]

1998 (2)

S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

S. Fan, P. Villeneuve, J. D. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4
[CrossRef] [PubMed]

1997 (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

1996 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Badilescu, S.

Y. -H. Ye, S. Badilescu, and V. -V. Truong, “Large-scale ordered macroporous SiO2 thin films by a template-directed method,” Appl. Phys. Lett. 81, 616–618 (2002).
[CrossRef]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Barnes, W. L.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

Beigang, R.

L. prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology 15, 639–642 (2004).
[CrossRef]

Berger, V.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Blanco, A.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Bolten, J.

C. Moormann, J. Bolten, and H. Kurz, “Spatial phase-locked combination lithography for photonic crystals devices,” Microelectron. Engineer. 73–74, 417–422 (2004).
[CrossRef]

Bostan, C.

L. prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology 15, 639–642 (2004).
[CrossRef]

Braun, P. V.

W. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
[CrossRef]

Busch, K.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Cai, L.

X. Yang, L. Cai, and Q. Liu, “Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures,” Appl. Opt. 32, 6894–6900 (2002).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Chen, G.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

Chen, J.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Chenand, H.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001).
[CrossRef]

Cho, A. Y.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Chow, E.

S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Costard, E.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

de Ridder, R. M.

L. prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology 15, 639–642 (2004).
[CrossRef]

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Deppe, D.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001).
[CrossRef]

Deubel, M.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Divliansky, I. B.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
[CrossRef]

Doll, T.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Enkrich, C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Euser, T. G.

L. prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology 15, 639–642 (2004).
[CrossRef]

Fainman, Y.

Fan, S.

Fluck, E.

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
[CrossRef]

Freymann, G. V.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Gauthier-Lafaye, O.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Gmachl, C.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Gu, M.

Han, Y. -J.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Haus, H.

Hietala, V.

S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

S. Fan, P. Villeneuve, J. D. Joannopoulos, and H. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Juodkazis, S.

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for the infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

Kaneko, K.

Kawata, S.

H. B. Sun, A. Nakamura, K. Kaneko, S. Shoji, and S. Kawata, “Direct laser writing defects in holographic lithography-created photonic lattices,” Opt. Lett. 30, 881–883 (2005).
[CrossRef] [PubMed]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

Keating, C. D.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
[CrossRef]

Khoo, I.-C.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
[CrossRef]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

Koch, W.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

Kuipers, L.

L. prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology 15, 639–642 (2004).
[CrossRef]

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
[CrossRef]

Kurz, H.

C. Moormann, J. Bolten, and H. Kurz, “Spatial phase-locked combination lithography for photonic crystals devices,” Microelectron. Engineer. 73–74, 417–422 (2004).
[CrossRef]

Lee, W.

W. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
[CrossRef]

Lin, S. -Y.

S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

Liu, Q.

X. Yang, L. Cai, and Q. Liu, “Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures,” Appl. Opt. 32, 6894–6900 (2002).
[CrossRef]

Loncar, M.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Maldovan, M.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

Mallouk, T. E.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
[CrossRef]

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[CrossRef]

Mayer, T. S.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
[CrossRef]

Meisel, D. C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Miklyaev, Y. V.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Misawa, H.

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for the infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[CrossRef]

Mizeikis, V.

V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for the infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

Moormann, C.

C. Moormann, J. Bolten, and H. Kurz, “Spatial phase-locked combination lithography for photonic crystals devices,” Microelectron. Engineer. 73–74, 417–422 (2004).
[CrossRef]

Nakagawa, W.

Nakamura, A.

Nedeljkovic, D.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Nijdam, W.

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
[CrossRef]

Nishimura, S.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
[CrossRef]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Painter, O.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Pang, L.

Pearsall, T. P.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Pena, D.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
[CrossRef]

Pereira, S.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

prodan, L.

L. prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology 15, 639–642 (2004).
[CrossRef]

Pruzinsky, S. A.

W. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
[CrossRef]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

Scherer, A.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Seet, K. K.

Segerink, F. B.

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Shishido, A.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
[CrossRef]

Shoji, S.

H. B. Sun, A. Nakamura, K. Kaneko, S. Shoji, and S. Kawata, “Direct laser writing defects in holographic lithography-created photonic lattices,” Opt. Lett. 30, 881–883 (2005).
[CrossRef] [PubMed]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

Soukoulis, C. M.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

Straub, M.

Su, H. M.

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, “Effects of polarization on laser holography for microstructure fabrication,” Phys. Rev. E 67, 056619 (2003).
[CrossRef]

Sun, H. B.

H. B. Sun, A. Nakamura, K. Kaneko, S. Shoji, and S. Kawata, “Direct laser writing defects in holographic lithography-created photonic lattices,” Opt. Lett. 30, 881–883 (2005).
[CrossRef] [PubMed]

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[CrossRef]

Thomas, E. L.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Truong, V. -V.

Y. -H. Ye, S. Badilescu, and V. -V. Truong, “Large-scale ordered macroporous SiO2 thin films by a template-directed method,” Appl. Phys. Lett. 81, 616–618 (2002).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Ullal, C. K.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

van Hulst, N. F.

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
[CrossRef]

van Wolferen, H. A. G. M.

L. prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology 15, 639–642 (2004).
[CrossRef]

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
[CrossRef]

Villeneuve, P.

Villeneuve, P. R.

S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Vogelaar, L.

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
[CrossRef]

Vuckovic, J.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Wang, H. Z.

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, “Effects of polarization on laser holography for microstructure fabrication,” Phys. Rev. E 67, 056619 (2003).
[CrossRef]

Wang, X.

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, “Effects of polarization on laser holography for microstructure fabrication,” Phys. Rev. E 67, 056619 (2003).
[CrossRef]

Wegener, M.

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

Xu, J. F.

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, “Effects of polarization on laser holography for microstructure fabrication,” Phys. Rev. E 67, 056619 (2003).
[CrossRef]

Xu, Y.

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Yang, S.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

Yang, X.

X. Yang, L. Cai, and Q. Liu, “Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures,” Appl. Opt. 32, 6894–6900 (2002).
[CrossRef]

Ye, J. Y.

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

Ye, Y. -H.

Y. -H. Ye, S. Badilescu, and V. -V. Truong, “Large-scale ordered macroporous SiO2 thin films by a template-directed method,” Appl. Phys. Lett. 81, 616–618 (2002).
[CrossRef]

Yoshie, T.

T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001).
[CrossRef]

Zheng, X. G.

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, “Effects of polarization on laser holography for microstructure fabrication,” Phys. Rev. E 67, 056619 (2003).
[CrossRef]

Zhong, Y. C.

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, “Effects of polarization on laser holography for microstructure fabrication,” Phys. Rev. E 67, 056619 (2003).
[CrossRef]

Adv. Mater. (2)

W. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater. 14, 271–274 (2002).
[CrossRef]

L. Vogelaar, W. Nijdam, H. A. G. M. van Wolferen, R. M. de Ridder, F. B. Segerink, E. Fluck, L. Kuipers, and N. F. van Hulst, “Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography,” Adv. Mater. 13, 1551–1554 (2001).
[CrossRef]

Appl. Opt. (2)

X. Yang, L. Cai, and Q. Liu, “Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures,” Appl. Opt. 32, 6894–6900 (2002).
[CrossRef]

L. Pang, W. Nakagawa, and Y. Fainman:, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” Appl. Opt. 42, 5450–5456 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (11)

H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, “Microcavities in polymeric photonic crystals,” Appl. Phys. Lett. 79, 1–3 (2001).
[CrossRef]

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79, 3392–3394 (2001).
[CrossRef]

Y. -H. Ye, S. Badilescu, and V. -V. Truong, “Large-scale ordered macroporous SiO2 thin films by a template-directed method,” Appl. Phys. Lett. 81, 616–618 (2002).
[CrossRef]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. V. Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82, 2758–2760 (2003).
[CrossRef]

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. -J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

T. Yoshie, J. Vuckovic, A. Scherer, H. Chenand, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79, 4289–4291 (2001).
[CrossRef]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “The fabrication of submicron hexagonal arrays using multiple-exposure optical interferometry,” IEEE Photon. Technol. Lett. 8, 1662–1664 (1996).
[CrossRef]

J. Appl. Phys. (1)

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
[CrossRef]

Microelectron. Engineer. (1)

C. Moormann, J. Bolten, and H. Kurz, “Spatial phase-locked combination lithography for photonic crystals devices,” Microelectron. Engineer. 73–74, 417–422 (2004).
[CrossRef]

Nanotechnology (1)

L. prodan, T. G. Euser, H. A. G. M. van Wolferen, C. Bostan, R. M. de Ridder, R. Beigang, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography,” Nanotechnology 15, 639–642 (2004).
[CrossRef]

Nature (2)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Nature Mater. (1)

M. Deubel, G. V. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensionalphotonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. E (1)

H. M. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, “Effects of polarization on laser holography for microstructure fabrication,” Phys. Rev. E 67, 056619 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Science (2)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of experimental setup: The laser beam is extended by two lenses L1 and L2; Three beams, 1, 2, and 3, of the same profile, polarization, and intensity are selected by a triple-iris; Beams 1 and 3 are used to make 2D periodic structures by means of interference, and beam 2 is used to irradiate the sample through a mask.

Fig. 2.
Fig. 2.

Calculated light intensity distribution of multiple-exposure of two-beam interference pattern. (a) Double-exposure at α=0° and 90°, (b) double-exposure at α=0° and 60°, (c) triple-exposure at α=-60°, 0° and 60°.

Fig. 3.
Fig. 3.

AFM images of 2D periodic structures. (a): hexagonal structure obtained with 1s-exposure time. (b) and (c): square structures obtained with 1s- and 2s-exposure time, respectively. The lattice constant, Λ=3 µm (θ=3.1°).

Fig. 4.
Fig. 4.

AFM images of 2D periodic structures embedding defects. The exposure condition for periodic structures is same as in Fig. 3(a)(b) and the defects are obtained with 5s-exposure time. In (b) and (c): the line defects are oriented at 0° and at 45° with respect to the direction of square structures, respectively.

Fig. 5.
Fig. 5.

AFM images of 2D periodic structures. (a) large scale and (b) zoom in. The period of structure is equal to 365 nm (θ=300).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I α = E 1 α + E 3 α 2 ,
E 1 α , 3 α = E 10 , 30 cos [ k z cos θ ± k x sin θ cos α ± k y sin θ sin α ω t ] ,
Λ = λ 2 sin θ ,
I multiple exp osure = i I α i ,

Metrics