Abstract

We report on a simple design for a multi-GHz tunable-repetition-rate diode-pumped picosecond laser. Using a plano-Brewster Nd:GdVO4 crystal in a V-folded cavity employing only readily available commercial components, we achieved passive mode-locking with 4.4-ps pulses tunable in the range 2.5–2.7 GHz. This laser is meant to be employed in the MIR experiment that aims at the detection of the Schwinger radiation (dynamical Casimir effect).

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
    [Crossref]
  2. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
    [Crossref]
  3. S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
    [Crossref]
  4. L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
    [Crossref] [PubMed]
  5. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [Crossref]
  6. T.Y. Fan and A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990).
    [Crossref]
  7. B. Braun, K. Weingarten, F.X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. Part I. Experiments,” Appl. Phys. B 61, 429–437 (1995).
    [Crossref]
  8. S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481–485 (2002).
    [Crossref]

2005 (2)

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

2004 (1)

2002 (2)

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481–485 (2002).
[Crossref]

1999 (1)

1995 (1)

B. Braun, K. Weingarten, F.X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. Part I. Experiments,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

1990 (1)

T.Y. Fan and A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990).
[Crossref]

Balembois, F.

S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481–485 (2002).
[Crossref]

Braggio, C.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

Braun, B.

B. Braun, K. Weingarten, F.X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. Part I. Experiments,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

Bressi, G.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

Carugno, G.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

Del Noce, C.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

Devilder, P.-J.

S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481–485 (2002).
[Crossref]

Ebling, D.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
[Crossref] [PubMed]

Fan, T.Y.

T.Y. Fan and A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990).
[Crossref]

Forget, S.

S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481–485 (2002).
[Crossref]

Galeazzi, G.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

Georges, P.

S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481–485 (2002).
[Crossref]

Golling, M.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
[Crossref] [PubMed]

Hayakawa, T.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
[Crossref] [PubMed]

Hönninger, C.

Kalisch, M.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

Kärtner, F.X.

B. Braun, K. Weingarten, F.X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. Part I. Experiments,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

Keller, U.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
[Crossref] [PubMed]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

B. Braun, K. Weingarten, F.X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. Part I. Experiments,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

Krainer, L.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
[Crossref] [PubMed]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

Lecomte, S.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
[Crossref] [PubMed]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

Lombardi, A.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

Morier-Genoud, F.

Moser, M.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

Nodop, D.

Ohgoh, T.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
[Crossref] [PubMed]

Palmieri, A.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

Paschotta, R.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
[Crossref] [PubMed]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

Pawlik, S.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

Ruoso, G.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

Sanchez, A.

T.Y. Fan and A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990).
[Crossref]

Schmidt, B.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

Spühler, G.J.

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
[Crossref] [PubMed]

Weingarten, K.

L. Krainer, D. Nodop, G.J. Spühler, S. Lecomte, M. Golling, R. Paschotta, D. Ebling, T. Ohgoh, T. Hayakawa, K. Weingarten, and U. Keller, “Compact 10-GHz Nd:GdVO4 laser with 0.5-W average output power and low timing jitter,” Opt. Lett. 29, 2629–2631 (2004).
[Crossref] [PubMed]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

B. Braun, K. Weingarten, F.X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. Part I. Experiments,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

Zanello, D.

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

Appl. Phys. B (2)

B. Braun, K. Weingarten, F.X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole-burning. Part I. Experiments,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

S. Forget, F. Balembois, P. Georges, and P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481–485 (2002).
[Crossref]

Europhys. Lett. (1)

C. Braggio, G. Bressi, G. Carugno, C. Del Noce, G. Galeazzi, A. Lombardi, A. Palmieri, G. Ruoso, and D. Zanello, “A novel experimental approach for the detection of the dynamical Casimir effect,” Europhys. Lett. 70, 754–760 (2005).
[Crossref]

IEEE J. Quantum Electron. (3)

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

S. Lecomte, M. Kalisch, L. Krainer, G.J. Spühler, R. Paschotta, M. Golling, D. Ebling, T. Ohgoh, T. Hayakawa, S. Pawlik, B. Schmidt, and U. Keller, “Diode-pumped passively mode-locked Nd:YVO4 lasers with 40-GHz repetition rate,” IEEE J. Quantum Electron. 41, 45–52 (2005).
[Crossref]

T.Y. Fan and A. Sanchez, “Pump source requirements for end-pumped lasers,” IEEE J. Quantum Electron. 26, 311–316 (1990).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Layout of the diode-pumped 2.6-GHz Nd:GdVO4 laser. L1 and L2 are aspheric lenses for collimation and focussing, respectively, and APP is the prism pair for slow-axis expansion.

Fig. 2.
Fig. 2.

Fresnel loss from the quasi-Brewster interface as a function of the angle offset. The inclination of the uncoated face yielding exact Brewster incidence is θ=24.52°.

Fig. 3.
Fig. 3.

Numerically computed critical output power for cw mode-locking (a) and waist radii (b) as a function of the repetition frequency. The waist radii on the SAM (wa ) as well as on the gain medium (wg ) are calculated (both for the tangential (t) and the sagittal (s) planes), near the 2.6-GHz edge of the stability region. Actually, the tangential waist radius within the laser crystal has to be multiplied by the refractive index n=2.192.

Fig. 4.
Fig. 4.

Non-collinear background-free second-harmonic autocorrelation and spectrum of the passively mode-locked laser (inset).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E c = F a F g A a A g Δ R

Metrics