J. Lumpp, S. K. Maxumdar,S. D. Gedney, "Performnce Modeling of the Finite-Difference Time-Domain Method on Parallel Systems," ACES Journal 13, 147-159, (1998).

T. W. Secomb, R. Hsu, A. R. Pries, "Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity," Am. J. Physiol. Heart Circ. Physiol. H629-H636, (2001).

[PubMed]

P. S. Excell, A. D. Tinniswood, K. Haigh-Hutchinson, "Parallel computation of large-scale electromagnetic field distributions," Appl. Comput. Electromagn. Soc. J. 13, 179-187, (1998).

L. Turner, "Rayleigh-Gans-Born Light Scattering by Ensembles of Randomly Oriented Anisotropic Particles," Appl. Opt. 12, 1085-1090, (1973).

[CrossRef]
[PubMed]

W. Sun, Q. Fu,Z. Chen, "Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition," Appl. Opt. 38, 3141-3151, (1999).

[CrossRef]

P. W. Zhai, Y. K. Lee, G. W. Kattawar, P. Yang, "Implemting the near- to far-field transformation in the finite-difference time-domain method," Appl. Opt. 43, 3738-3746, (2004).

[CrossRef]
[PubMed]

S. Chien, R. G. King, R. Skalak, S. Usami,A. L. Copley, "Viscoelastic properties of human blood and red cell suspensions," Biorheology 12, 341-6, (1975).

[PubMed]

P. R. Zardar, S. Chien,R. Skalak, "Interaction of viscous incompressible fluid with an elastic body," in Computational Methods for Fluid-Solid Interaction Problems, T. L. Geers, Ed. (American Society of Mechanical Engineers, New York: 1977) pp. 65-82.

X. Li, A. Taflove, V. Backman, "Modified FDTD near-to-far-field transformation for improved backscattering calculation for strongly forward-scattering objects," IEEE Antennas and Wireless Propagation Lett. 4, 35-38, (2005).

[CrossRef]

A. Dunn, R. Richard-Kortum, "Three-dimensional computation of light scattering from cells," IEEE J. Sel. To. Quantum Electron 2, 898-890, (1996).

[CrossRef]

V. Varadarajan, R. Mittra, "Finite-difference time-domain analysis using distributed computing," IEEE Microwave Guided Wave Lett. 4, 144-145, (1994).

[CrossRef]

S. K. Yee, "Numerical solutions of initial boundary problems involving Maxwell's equations in isotropic materials," IEEE Trans. Antennas. Propg. 14, 302-307, (1966).

[CrossRef]

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, "Numerical simulations of light scattering by red blood cells," IEEE Trans. Biomed. Eng. 52, 13-18 (2005)

[CrossRef]
[PubMed]

S. Gedney, "Finite-difference time-domain analysis of microwave circuit devices on high performance vector/parallel computers," IEEE Trans. Microwave Theory Techniques 43, 2510-2514, (1995).

[CrossRef]

K. C. Chew, V. F. Fusco, "A parallel implementaiton of the finite-difference time-domain algorithm," Int. J. Numerical Modeling 8, 293-299, (1995).

[CrossRef]

H. Hoteit, R. Sauleau, B. Philippe, P. Coquet, J. P. Daniel, "Vector and parallel implementations for the FDTD analysis of milimeter wave planar antennas," Int. J. of High Speed Computing 10, 209-234, (1999).

[CrossRef]

P. R. Zarda, S. Chien, R. Skalak, "Elastic deformations of red blood cells," J. Biomech. 10, 211-21, (1977).

[CrossRef]
[PubMed]

J. Q. Lu, P. Yang,X. H. Hu, "Simulations of Light Scattering from a Biconcave Red Blood Cell Using the FDTD method," J. Biomed. Opt. 10, 024022, (2005).

[CrossRef]
[PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16, (2003).

[CrossRef]
[PubMed]

T. W. Secomb, R. Skalak, N. Ozkaya, J. F. Gross, "Flow of axisymmetric red blood cells in narrow capillaries," J. Fluid Mech. 163, 405-423, (1986).

[CrossRef]

P. Yang, K. N. Liou, "Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space," J. Opt. Soc. Am. A 13, 2072-2085, (1996).

[CrossRef]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, "Light scattering by multiple red blood cells," J. Opt. Soc. Am. A 21, 1953-1961 (2004)

[CrossRef]

E. Evans,Y. C. Fung, "Improved measurements of the erythrocyte geometry," Microvasc Res. 4, 335-47, (1972).

[CrossRef]
[PubMed]

V. P. Maltsev, "Scanning flow cytometry for individual particle analysis," Rev. Sci. Instrum. 71, 243-255 (2000)

[CrossRef]

R. Skalak,P. I. Branemark, "Deformation of red blood cells in capillaries," Science 164, 717-9, (1969).

[CrossRef]
[PubMed]

R. S. Brock, X. H. Hu, P. Yang, J. Q. Lu, "Simulation of light scattering by a pressure deformed red blood cell with a parallel FDTD method," SPIE Proc. 5702, 69-75, (2005).

[CrossRef]

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).

A. J. Grimes, Human Red Cell Metabolism, (Blackwell Scientific Pub, Oxford: 1980) pp. 57.

C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983).

H. C. van de Hulst, Light scattering by small particles, (Wiley, New York, 1957).

C. D. Bortner, J. A. Cidlowski, "Flow Cytometric Analysis of Cell Shrinkage and Monovalent Ions during Apoptosis," in Methods in Cell Biology: Apoptosis, vol. 66, J. Ashwell and L. Schmanti, Eds. (Academic Press, San Diego, 2000).