J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of Light Scattering from a Biconcave Red Blood Cell Using the FDTD method,” J. Biomed. Opt. 10, 024022, (2005).

[CrossRef]
[PubMed]

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Simulation of light scattering by a pressure deformed red blood cell with a parallel FDTD method,” SPIE Proc. 5702, 69–75, (2005).

[CrossRef]

X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation for strongly forward-scattering objects,” IEEE Antennas and Wireless Propagation Lett. 4, 35–38, (2005).

[CrossRef]

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13–18 (2005)

[CrossRef]
[PubMed]

X. Li, A. Taflove, and V. Backman, “Quantitative analysis of depolarization of backscattered light by stochastically inhomogeneous dielectric particles,” Opt. Lett. 30, 902–904, (2005).

[CrossRef]
[PubMed]

P. W. Zhai, Y. K. Lee, G. W. Kattawar, and P. Yang, “Implemting the near- to far-field transformation in the finite-difference time-domain method,” Appl. Opt. 43, 3738–3746, (2004).

[CrossRef]
[PubMed]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004)

[CrossRef]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16, (2003).

[CrossRef]
[PubMed]

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71, 243–255 (2000)

[CrossRef]

H. Hoteit, R. Sauleau, B. Philippe, P. Coquet, and J. P. Daniel, “Vector and parallel implementations for the FDTD analysis of milimeter wave planar antennas,” Int. J. of High Speed Computing 10, 209–234, (1999).

[CrossRef]

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151, (1999).

[CrossRef]

J. Lumpp, S. K. Maxumdar, and S. D. Gedney, “Performnce Modeling of the Finite-Difference Time-Domain Method on Parallel Systems,” ACES Journal 13, 147–159, (1998).

P. S. Excell, A. D. Tinniswood, and K. Haigh-Hutchinson, “Parallel computation of large-scale electromagnetic field distributions,” Appl. Comput. Electromagn. Soc. J. 13, 179–187, (1998).

K. C. Chew and V. F. Fusco, “A parallel implementaiton of the finite-difference time-domain algorithm,” Int. J. Numerical Modeling 8, 293–299, (1995).

[CrossRef]

S. Gedney, “Finite-difference time-domain analysis of microwave circuit devices on high performance vector/parallel computers,” IEEE Trans. Microwave Theory Techniques 43, 2510–2514, (1995).

[CrossRef]

V. Varadarajan and R. Mittra, “Finite-difference time-domain analysis using distributed computing,” IEEE Microwave Guided Wave Lett. 4, 144–145, (1994).

[CrossRef]

T. W. Secomb, R. Skalak, N. Ozkaya, and J. F. Gross, “Flow of axisymmetric red blood cells in narrow capillaries,” J. Fluid Mech. 163, 405–423, (1986).

[CrossRef]

P. R. Zarda, S. Chien, and R. Skalak, “Elastic deformations of red blood cells,” J. Biomech. 10, 211–21, (1977).

[CrossRef]
[PubMed]

S. Chien, R. G. King, R. Skalak, S. Usami, and A. L. Copley, “Viscoelastic properties of human blood and red cell suspensions,” Biorheology 12, 341–6, (1975).

[PubMed]

E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc Res. 4, 335–47, (1972).

[CrossRef]
[PubMed]

R. Skalak and P. I. Branemark, “Deformation of red blood cells in capillaries,” Science 164, 717–9, (1969).

[CrossRef]
[PubMed]

S. K. Yee, “Numerical solutions of initial boundary problems involving Maxwell’s equations in isotropic materials,” IEEE Trans. Antennas. Propg. 14, 302–307, (1966).

[CrossRef]

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13–18 (2005)

[CrossRef]
[PubMed]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004)

[CrossRef]

X. Li, A. Taflove, and V. Backman, “Quantitative analysis of depolarization of backscattered light by stochastically inhomogeneous dielectric particles,” Opt. Lett. 30, 902–904, (2005).

[CrossRef]
[PubMed]

X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation for strongly forward-scattering objects,” IEEE Antennas and Wireless Propagation Lett. 4, 35–38, (2005).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983).

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16, (2003).

[CrossRef]
[PubMed]

C. D. Bortner and J. A. Cidlowski, “Flow Cytometric Analysis of Cell Shrinkage and Monovalent Ions during Apoptosis,” in Methods in Cell Biology: Apoptosis, vol. 66, J. Ashwell and L. Schmanti, Eds. (Academic Press, San Diego, 2000).

R. Skalak and P. I. Branemark, “Deformation of red blood cells in capillaries,” Science 164, 717–9, (1969).

[CrossRef]
[PubMed]

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Simulation of light scattering by a pressure deformed red blood cell with a parallel FDTD method,” SPIE Proc. 5702, 69–75, (2005).

[CrossRef]

K. C. Chew and V. F. Fusco, “A parallel implementaiton of the finite-difference time-domain algorithm,” Int. J. Numerical Modeling 8, 293–299, (1995).

[CrossRef]

P. R. Zarda, S. Chien, and R. Skalak, “Elastic deformations of red blood cells,” J. Biomech. 10, 211–21, (1977).

[CrossRef]
[PubMed]

S. Chien, R. G. King, R. Skalak, S. Usami, and A. L. Copley, “Viscoelastic properties of human blood and red cell suspensions,” Biorheology 12, 341–6, (1975).

[PubMed]

P. R. Zardar, S. Chien, and R. Skalak, “Interaction of viscous incompressible fluid with an elastic body,” in Computational Methods for Fluid-Solid Interaction Problems, T. L. Geers, Ed. (American Society of Mechanical Engineers, New York: 1977) pp. 65–82.

C. D. Bortner and J. A. Cidlowski, “Flow Cytometric Analysis of Cell Shrinkage and Monovalent Ions during Apoptosis,” in Methods in Cell Biology: Apoptosis, vol. 66, J. Ashwell and L. Schmanti, Eds. (Academic Press, San Diego, 2000).

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16, (2003).

[CrossRef]
[PubMed]

S. Chien, R. G. King, R. Skalak, S. Usami, and A. L. Copley, “Viscoelastic properties of human blood and red cell suspensions,” Biorheology 12, 341–6, (1975).

[PubMed]

H. Hoteit, R. Sauleau, B. Philippe, P. Coquet, and J. P. Daniel, “Vector and parallel implementations for the FDTD analysis of milimeter wave planar antennas,” Int. J. of High Speed Computing 10, 209–234, (1999).

[CrossRef]

H. Hoteit, R. Sauleau, B. Philippe, P. Coquet, and J. P. Daniel, “Vector and parallel implementations for the FDTD analysis of milimeter wave planar antennas,” Int. J. of High Speed Computing 10, 209–234, (1999).

[CrossRef]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16, (2003).

[CrossRef]
[PubMed]

A. Dunn and R. Richard-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. To. Quantum Electron 2, 898–890, (1996).

[CrossRef]

E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc Res. 4, 335–47, (1972).

[CrossRef]
[PubMed]

P. S. Excell, A. D. Tinniswood, and K. Haigh-Hutchinson, “Parallel computation of large-scale electromagnetic field distributions,” Appl. Comput. Electromagn. Soc. J. 13, 179–187, (1998).

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16, (2003).

[CrossRef]
[PubMed]

E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc Res. 4, 335–47, (1972).

[CrossRef]
[PubMed]

K. C. Chew and V. F. Fusco, “A parallel implementaiton of the finite-difference time-domain algorithm,” Int. J. Numerical Modeling 8, 293–299, (1995).

[CrossRef]

S. Gedney, “Finite-difference time-domain analysis of microwave circuit devices on high performance vector/parallel computers,” IEEE Trans. Microwave Theory Techniques 43, 2510–2514, (1995).

[CrossRef]

J. Lumpp, S. K. Maxumdar, and S. D. Gedney, “Performnce Modeling of the Finite-Difference Time-Domain Method on Parallel Systems,” ACES Journal 13, 147–159, (1998).

A. J. Grimes, Human Red Cell Metabolism, (Blackwell Scientific Pub, Oxford: 1980) pp. 57.

T. W. Secomb, R. Skalak, N. Ozkaya, and J. F. Gross, “Flow of axisymmetric red blood cells in narrow capillaries,” J. Fluid Mech. 163, 405–423, (1986).

[CrossRef]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16, (2003).

[CrossRef]
[PubMed]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. ed. (Artech House, Boston, Mass., 2000).

P. S. Excell, A. D. Tinniswood, and K. Haigh-Hutchinson, “Parallel computation of large-scale electromagnetic field distributions,” Appl. Comput. Electromagn. Soc. J. 13, 179–187, (1998).

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13–18 (2005)

[CrossRef]
[PubMed]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004)

[CrossRef]

H. Hoteit, R. Sauleau, B. Philippe, P. Coquet, and J. P. Daniel, “Vector and parallel implementations for the FDTD analysis of milimeter wave planar antennas,” Int. J. of High Speed Computing 10, 209–234, (1999).

[CrossRef]

T. W. Secomb, R. Hsu, and A. R. Pries, “Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity,” Am. J. Physiol. Heart Circ. Physiol.H629–H636, (2001).

[PubMed]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of Light Scattering from a Biconcave Red Blood Cell Using the FDTD method,” J. Biomed. Opt. 10, 024022, (2005).

[CrossRef]
[PubMed]

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Simulation of light scattering by a pressure deformed red blood cell with a parallel FDTD method,” SPIE Proc. 5702, 69–75, (2005).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983).

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13–18 (2005)

[CrossRef]
[PubMed]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004)

[CrossRef]

S. Chien, R. G. King, R. Skalak, S. Usami, and A. L. Copley, “Viscoelastic properties of human blood and red cell suspensions,” Biorheology 12, 341–6, (1975).

[PubMed]

X. Li, A. Taflove, and V. Backman, “Quantitative analysis of depolarization of backscattered light by stochastically inhomogeneous dielectric particles,” Opt. Lett. 30, 902–904, (2005).

[CrossRef]
[PubMed]

X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation for strongly forward-scattering objects,” IEEE Antennas and Wireless Propagation Lett. 4, 35–38, (2005).

[CrossRef]

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Simulation of light scattering by a pressure deformed red blood cell with a parallel FDTD method,” SPIE Proc. 5702, 69–75, (2005).

[CrossRef]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of Light Scattering from a Biconcave Red Blood Cell Using the FDTD method,” J. Biomed. Opt. 10, 024022, (2005).

[CrossRef]
[PubMed]

J. Lumpp, S. K. Maxumdar, and S. D. Gedney, “Performnce Modeling of the Finite-Difference Time-Domain Method on Parallel Systems,” ACES Journal 13, 147–159, (1998).

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16, (2003).

[CrossRef]
[PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16, (2003).

[CrossRef]
[PubMed]

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71, 243–255 (2000)

[CrossRef]

J. Lumpp, S. K. Maxumdar, and S. D. Gedney, “Performnce Modeling of the Finite-Difference Time-Domain Method on Parallel Systems,” ACES Journal 13, 147–159, (1998).

V. Varadarajan and R. Mittra, “Finite-difference time-domain analysis using distributed computing,” IEEE Microwave Guided Wave Lett. 4, 144–145, (1994).

[CrossRef]

T. W. Secomb, R. Skalak, N. Ozkaya, and J. F. Gross, “Flow of axisymmetric red blood cells in narrow capillaries,” J. Fluid Mech. 163, 405–423, (1986).

[CrossRef]

H. Hoteit, R. Sauleau, B. Philippe, P. Coquet, and J. P. Daniel, “Vector and parallel implementations for the FDTD analysis of milimeter wave planar antennas,” Int. J. of High Speed Computing 10, 209–234, (1999).

[CrossRef]

T. W. Secomb, R. Hsu, and A. R. Pries, “Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity,” Am. J. Physiol. Heart Circ. Physiol.H629–H636, (2001).

[PubMed]

A. Dunn and R. Richard-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. To. Quantum Electron 2, 898–890, (1996).

[CrossRef]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16, (2003).

[CrossRef]
[PubMed]

H. Hoteit, R. Sauleau, B. Philippe, P. Coquet, and J. P. Daniel, “Vector and parallel implementations for the FDTD analysis of milimeter wave planar antennas,” Int. J. of High Speed Computing 10, 209–234, (1999).

[CrossRef]

T. W. Secomb, R. Skalak, N. Ozkaya, and J. F. Gross, “Flow of axisymmetric red blood cells in narrow capillaries,” J. Fluid Mech. 163, 405–423, (1986).

[CrossRef]

T. W. Secomb, R. Hsu, and A. R. Pries, “Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity,” Am. J. Physiol. Heart Circ. Physiol.H629–H636, (2001).

[PubMed]

T. W. Secomb, R. Skalak, N. Ozkaya, and J. F. Gross, “Flow of axisymmetric red blood cells in narrow capillaries,” J. Fluid Mech. 163, 405–423, (1986).

[CrossRef]

P. R. Zarda, S. Chien, and R. Skalak, “Elastic deformations of red blood cells,” J. Biomech. 10, 211–21, (1977).

[CrossRef]
[PubMed]

S. Chien, R. G. King, R. Skalak, S. Usami, and A. L. Copley, “Viscoelastic properties of human blood and red cell suspensions,” Biorheology 12, 341–6, (1975).

[PubMed]

R. Skalak and P. I. Branemark, “Deformation of red blood cells in capillaries,” Science 164, 717–9, (1969).

[CrossRef]
[PubMed]

P. R. Zardar, S. Chien, and R. Skalak, “Interaction of viscous incompressible fluid with an elastic body,” in Computational Methods for Fluid-Solid Interaction Problems, T. L. Geers, Ed. (American Society of Mechanical Engineers, New York: 1977) pp. 65–82.

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13–18 (2005)

[CrossRef]
[PubMed]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004)

[CrossRef]

X. Li, A. Taflove, and V. Backman, “Quantitative analysis of depolarization of backscattered light by stochastically inhomogeneous dielectric particles,” Opt. Lett. 30, 902–904, (2005).

[CrossRef]
[PubMed]

X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation for strongly forward-scattering objects,” IEEE Antennas and Wireless Propagation Lett. 4, 35–38, (2005).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. ed. (Artech House, Boston, Mass., 2000).

P. S. Excell, A. D. Tinniswood, and K. Haigh-Hutchinson, “Parallel computation of large-scale electromagnetic field distributions,” Appl. Comput. Electromagn. Soc. J. 13, 179–187, (1998).

S. Chien, R. G. King, R. Skalak, S. Usami, and A. L. Copley, “Viscoelastic properties of human blood and red cell suspensions,” Biorheology 12, 341–6, (1975).

[PubMed]

H. C. van de Hulst, Light scattering by small particles, (Wiley, New York,, 1957).

V. Varadarajan and R. Mittra, “Finite-difference time-domain analysis using distributed computing,” IEEE Microwave Guided Wave Lett. 4, 144–145, (1994).

[CrossRef]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of Light Scattering from a Biconcave Red Blood Cell Using the FDTD method,” J. Biomed. Opt. 10, 024022, (2005).

[CrossRef]
[PubMed]

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Simulation of light scattering by a pressure deformed red blood cell with a parallel FDTD method,” SPIE Proc. 5702, 69–75, (2005).

[CrossRef]

P. W. Zhai, Y. K. Lee, G. W. Kattawar, and P. Yang, “Implemting the near- to far-field transformation in the finite-difference time-domain method,” Appl. Opt. 43, 3738–3746, (2004).

[CrossRef]
[PubMed]

P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085, (1996).

[CrossRef]

S. K. Yee, “Numerical solutions of initial boundary problems involving Maxwell’s equations in isotropic materials,” IEEE Trans. Antennas. Propg. 14, 302–307, (1966).

[CrossRef]

P. R. Zarda, S. Chien, and R. Skalak, “Elastic deformations of red blood cells,” J. Biomech. 10, 211–21, (1977).

[CrossRef]
[PubMed]

P. R. Zardar, S. Chien, and R. Skalak, “Interaction of viscous incompressible fluid with an elastic body,” in Computational Methods for Fluid-Solid Interaction Problems, T. L. Geers, Ed. (American Society of Mechanical Engineers, New York: 1977) pp. 65–82.

J. Lumpp, S. K. Maxumdar, and S. D. Gedney, “Performnce Modeling of the Finite-Difference Time-Domain Method on Parallel Systems,” ACES Journal 13, 147–159, (1998).

P. S. Excell, A. D. Tinniswood, and K. Haigh-Hutchinson, “Parallel computation of large-scale electromagnetic field distributions,” Appl. Comput. Electromagn. Soc. J. 13, 179–187, (1998).

L. Turner, “Rayleigh-Gans-Born Light Scattering by Ensembles of Randomly Oriented Anisotropic Particles,” Appl. Opt. 12, 1085–1090, (1973).

[CrossRef]
[PubMed]

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151, (1999).

[CrossRef]

P. W. Zhai, Y. K. Lee, G. W. Kattawar, and P. Yang, “Implemting the near- to far-field transformation in the finite-difference time-domain method,” Appl. Opt. 43, 3738–3746, (2004).

[CrossRef]
[PubMed]

S. Chien, R. G. King, R. Skalak, S. Usami, and A. L. Copley, “Viscoelastic properties of human blood and red cell suspensions,” Biorheology 12, 341–6, (1975).

[PubMed]

X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation for strongly forward-scattering objects,” IEEE Antennas and Wireless Propagation Lett. 4, 35–38, (2005).

[CrossRef]

A. Dunn and R. Richard-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. To. Quantum Electron 2, 898–890, (1996).

[CrossRef]

V. Varadarajan and R. Mittra, “Finite-difference time-domain analysis using distributed computing,” IEEE Microwave Guided Wave Lett. 4, 144–145, (1994).

[CrossRef]

S. K. Yee, “Numerical solutions of initial boundary problems involving Maxwell’s equations in isotropic materials,” IEEE Trans. Antennas. Propg. 14, 302–307, (1966).

[CrossRef]

A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13–18 (2005)

[CrossRef]
[PubMed]

S. Gedney, “Finite-difference time-domain analysis of microwave circuit devices on high performance vector/parallel computers,” IEEE Trans. Microwave Theory Techniques 43, 2510–2514, (1995).

[CrossRef]

K. C. Chew and V. F. Fusco, “A parallel implementaiton of the finite-difference time-domain algorithm,” Int. J. Numerical Modeling 8, 293–299, (1995).

[CrossRef]

H. Hoteit, R. Sauleau, B. Philippe, P. Coquet, and J. P. Daniel, “Vector and parallel implementations for the FDTD analysis of milimeter wave planar antennas,” Int. J. of High Speed Computing 10, 209–234, (1999).

[CrossRef]

P. R. Zarda, S. Chien, and R. Skalak, “Elastic deformations of red blood cells,” J. Biomech. 10, 211–21, (1977).

[CrossRef]
[PubMed]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of Light Scattering from a Biconcave Red Blood Cell Using the FDTD method,” J. Biomed. Opt. 10, 024022, (2005).

[CrossRef]
[PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16, (2003).

[CrossRef]
[PubMed]

T. W. Secomb, R. Skalak, N. Ozkaya, and J. F. Gross, “Flow of axisymmetric red blood cells in narrow capillaries,” J. Fluid Mech. 163, 405–423, (1986).

[CrossRef]

P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085, (1996).

[CrossRef]

J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21, 1953–1961 (2004)

[CrossRef]

E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc Res. 4, 335–47, (1972).

[CrossRef]
[PubMed]

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71, 243–255 (2000)

[CrossRef]

R. Skalak and P. I. Branemark, “Deformation of red blood cells in capillaries,” Science 164, 717–9, (1969).

[CrossRef]
[PubMed]

R. S. Brock, X. H. Hu, P. Yang, and J. Q. Lu, “Simulation of light scattering by a pressure deformed red blood cell with a parallel FDTD method,” SPIE Proc. 5702, 69–75, (2005).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. ed. (Artech House, Boston, Mass., 2000).

A. J. Grimes, Human Red Cell Metabolism, (Blackwell Scientific Pub, Oxford: 1980) pp. 57.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley, New York, 1983).

T. W. Secomb, R. Hsu, and A. R. Pries, “Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity,” Am. J. Physiol. Heart Circ. Physiol.H629–H636, (2001).

[PubMed]

H. C. van de Hulst, Light scattering by small particles, (Wiley, New York,, 1957).

C. D. Bortner and J. A. Cidlowski, “Flow Cytometric Analysis of Cell Shrinkage and Monovalent Ions during Apoptosis,” in Methods in Cell Biology: Apoptosis, vol. 66, J. Ashwell and L. Schmanti, Eds. (Academic Press, San Diego, 2000).

P. R. Zardar, S. Chien, and R. Skalak, “Interaction of viscous incompressible fluid with an elastic body,” in Computational Methods for Fluid-Solid Interaction Problems, T. L. Geers, Ed. (American Society of Mechanical Engineers, New York: 1977) pp. 65–82.