Abstract

A Nd:GdVO4 laser mode locked by self-defocussing cascaded Kerr lens in PPKTP is presented. A strong pulse shortening mechanism is produced by the interplay of group velocity mismatch and the cavity design. The cavity had a repetition rate of 200 MHz and the mode-locked output power was 350 mW. Pulses as short as 2.8 ps were obtained with a bandwidth of 0.6 nm.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Ogawa, Y. Urata, S. Wada, K. Onodera, H. Machida, H. Sagae, M. Hihuchi, K. Korada, �??Efficient laser performance in Nd:GVO4 crystals grown by the floating zone method,�?? Opt. Lett. 28, 2333-2335 (2003).
    [CrossRef] [PubMed]
  2. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, U. Keller, �??Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,�?? IEEE J. Quantum Electron. 38, 1331-1338 (2002).
    [CrossRef]
  3. P. K. Yang, J. Y. Huang, �??An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,�?? Opt. Commun. 173, 315-321 (2000).
    [CrossRef]
  4. A. Agnesi, A. Lucca, G. Reali, A. Tomaselli, �??All-solid-state high-repetition-rate optical source tunable in wavelength and in pulse duration,�?? J. Opt. Soc. Am. B 18, 286-290 (2001).
    [CrossRef]
  5. Y. F. Chen, S. W. Tsai, S. C. Wang, �??High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically poled KTP,�?? Appl. Phys. B 72, 395-397 (2001).
    [CrossRef]
  6. K. A. Stankov and J. Jetwa, �??A new mode-locking technique using a nonlinear mirror,�?? Opt. Commun. 66, 41-46 (1988).
    [CrossRef]
  7. G. McConnell, A. I. Ferguson, N. Langford, �??Additive-pulse mode locking of a diode-pumped Nd:YVO4 laser,�?? Appl. Phys. B 74, 7-9 (2001).
    [CrossRef]
  8. E. Sorokin, I. Sorokina, E. Wintner, �??CW Passive Mode-Locking of a New Nd3+:GdVO4 Crystal Laser�??, OSA Proc. on ASSL, Vol. 15, 238-241 (1993).
  9. V. Couderc, F. Louradour, A. Barthélémy, �??2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching,�?? Opt. Commun. 166, 103-111 (1999).
    [CrossRef]
  10. G. Toci, M. Vannini, R. Salimbeni, �??Pertubative model for nonstationary second-order cascaded effects,�?? J. Opt. Soc. Am. B 15, 103-117 (1998).
    [CrossRef]
  11. M. Zavelani-Rossi, G. Cerullo, V. Magni, �??Mode locking by cascading second order nonlinearities,�?? IEEE J. Quantum Electron. 34, 61-70 (1998).
    [CrossRef]
  12. F. Wise, L. Qian, X. Liu, �??Applications of cascaded quadratic nonlinearities to femtosecond pulse generation,�?? J. Nonlinear Opt. Phys. Mat. 11, 317-338 (2002).
    [CrossRef]
  13. <a href="http://www.sandia.gov/imrl/X1118/xxtal.htm">http://www.sandia.gov/imrl/X1118/xxtal.htm</a>.

Appl. Phys. B (2)

Y. F. Chen, S. W. Tsai, S. C. Wang, �??High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically poled KTP,�?? Appl. Phys. B 72, 395-397 (2001).
[CrossRef]

G. McConnell, A. I. Ferguson, N. Langford, �??Additive-pulse mode locking of a diode-pumped Nd:YVO4 laser,�?? Appl. Phys. B 74, 7-9 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, U. Keller, �??Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,�?? IEEE J. Quantum Electron. 38, 1331-1338 (2002).
[CrossRef]

M. Zavelani-Rossi, G. Cerullo, V. Magni, �??Mode locking by cascading second order nonlinearities,�?? IEEE J. Quantum Electron. 34, 61-70 (1998).
[CrossRef]

J. Nonlinear Opt. Phys. Mat. (1)

F. Wise, L. Qian, X. Liu, �??Applications of cascaded quadratic nonlinearities to femtosecond pulse generation,�?? J. Nonlinear Opt. Phys. Mat. 11, 317-338 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

P. K. Yang, J. Y. Huang, �??An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,�?? Opt. Commun. 173, 315-321 (2000).
[CrossRef]

K. A. Stankov and J. Jetwa, �??A new mode-locking technique using a nonlinear mirror,�?? Opt. Commun. 66, 41-46 (1988).
[CrossRef]

V. Couderc, F. Louradour, A. Barthélémy, �??2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching,�?? Opt. Commun. 166, 103-111 (1999).
[CrossRef]

Opt. Lett. (1)

OSA Proc. on ASSL (1)

E. Sorokin, I. Sorokina, E. Wintner, �??CW Passive Mode-Locking of a New Nd3+:GdVO4 Crystal Laser�??, OSA Proc. on ASSL, Vol. 15, 238-241 (1993).

Other (1)

<a href="http://www.sandia.gov/imrl/X1118/xxtal.htm">http://www.sandia.gov/imrl/X1118/xxtal.htm</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) The cavity design.

Fig. 2.
Fig. 2.

Temperature tuning curve of the PPKTP sample. The region of modelocking is indicated with an ellipse.

Fig. 3.
Fig. 3.

Laser power curve. The mode-locked region indicated with an ellipse.

Fig. 4.
Fig. 4.

Oscilloscope trace from a fast photodiode. The zoomed inset shows individual pulses.

Fig. 5.
Fig. 5.

Autocorrelation trace.

Fig. 6.
Fig. 6.

Mode-locked and continuous wave spectra.

Fig. 7.
Fig. 7.

Diffraction loss simulation for the cavity. The diffraction loss variation with Kerr lens power is shown for three different thermal lens focal lengths, all within the limit of geometrical stability.

Fig. 8.
Fig. 8.

Magnification loss simulation for the cavity. The magnification loss variation with Kerr lens power is shown for three different thermal lens focal lengths, all corresponding to geometrically unstable cavities.

Fig. 9.
Fig. 9.

Kerr lensing with (solid) and without (dotted) GVM. Pulse profile (dashed) is included.

Fig. 10.
Fig. 10.

Simulated Kerr lens strength in the presence of GVM. Note that the curved wavefront has maximum Kerr lens at a larger phase mismatch.

Fig. 11.
Fig. 11.

Pulse shortening fraction as function of beam size.

Metrics