Abstract

Well-faceted ZnO fibers with periodic junction-prisms were synthesized using conventional chemical vapor deposition. The characterization of the fibers by optical and fluorescence microscopy showed that the outer facets of the crystalline fibers provide excellent mirror-like surfaces for guiding light propagation along the fiber stem as well as the periodic junction-prisms. The structure-related optical properties can be fully explained by a microstructural model. The proposed model explains as the decrease in luminance at the junction-prisms is caused by refraction and total or partial reflection of light. The model also explains the luminance enhancement at the junction-prisms is related to waveguiding of the green emission of the ZnO fibers. Further integration of the ZnO junction-prisms into microdevices should provide the microscale modulation for light with different wavelengths, and could be potentially used for enhanced light-illumination arrays.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. P. Alivisatos, �??Semiconductor Clusters, Nanocrystals, and Quantum Dots,�?? Science 271, 933-937 (1996).
    [CrossRef]
  2. A. D. Yoffe, �??Semiconductor quantum dots and related systems-electronic, optical, luminescence and related properties of low dimensional systems,�?? Advances In Physics 50, 1-208 (2001).
    [CrossRef]
  3. Z. L. Wang, �??Zinc oxide nanostructures: growth, properties and applications,�?? J. Phys.: Condens. Matter. 16, 829-858 (2004).
    [CrossRef]
  4. Z. R. Tian, J. Voigt, J. Liu, B. Mckenzie, M. McDermott, M. Rodriguez, H. Konishi, H. F. Xu, �??Complex and oriented ZnO nanostructures,�?? Nat. Mater. 2, 821-826 (2003).
    [CrossRef] [PubMed]
  5. Z. Yao, H. Postma, L. Balents, C. Dekker, �??Carbon nanotube intramolecular junctions,�?? Nature 402, 273-276 (1999).
    [CrossRef]
  6. X. F. Qiu, C. Burda, R. L. Fu, L. Pu, H. Y. Chen, J. J. Zhu, �??Heterostructured Bi2Se3 nanowires with periodic phase boundaries,�?? J. Am. Chem. Soc. 126, 16276-16277 (2004).
    [CrossRef] [PubMed]
  7. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, A. P. Alivisatos, �??Controlled growth of tetrapod-branched inorganic nanocrystals,�?? Nat. Mater. 2, 382-385 (2003).
    [CrossRef] [PubMed]
  8. L. S. Huang, S. Wright, S. Yang, D. Z. Shen, B. X. Gu, Y. W. Du, �??ZnO well-faceted fibers with periodic junctions,�?? J. Phys. Chem. B. 108, 19901-19903 (2004).
    [CrossRef]
  9. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, �??Room-temperature ultraviolet nanowire nanolasers,�?? Science 292, 1897-1899. (2001).
    [CrossRef] [PubMed]
  10. J. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, R. J. Saykally, �??Single gallium nitride nanowire lasers,�?? Nat. Mater. 1, 106-110. (2002).
    [CrossRef]
  11. M. Law, D. Sirbuly, J. Johnson, J. Goldberger, R. Saykally, P. Yang, �??Ultralong nanoribbon waveguides for sub-wavelength photonics integration,�?? Science 305, 1269-1271 (2004).
    [CrossRef] [PubMed]
  12. C. J. Barrelet, A. B. Greytak, C. M. Lieber, �??Nanowire photonic circuit elements,�?? Nano Lett. 4, 1981-1985. (2004).
    [CrossRef]
  13. X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. C. Scher, A. Kadavanich, A. P. Alivisatos, �??Shape control of CdSe nanocrystals,�?? Nature 404, 59-61 (2000).
    [CrossRef] [PubMed]
  14. R. Jin, , Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, C. A. Mirkin, �??Controlling anisotropic nanoparticle growth through plasmon excitation,�?? Nature 425, 487-490 (2003).
    [CrossRef] [PubMed]
  15. S. I. Wright, B. L. Adams, K. Kunze, �??Application of new automatic lattice orientation measurement technique to polycrystalline aluminum,�?? Mater. Sci. Eng. A 160, 229-240 (1993).
    [CrossRef]
  16. K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, M. Horie, "Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate," J. of Appl. Phys. 87, 7820-7824 (2000).
    [CrossRef]
  17. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, �??The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,�?? J. Phys. Chem. B. 104, 1715-1723 (2000).
    [CrossRef]

Advances In Physics (1)

A. D. Yoffe, �??Semiconductor quantum dots and related systems-electronic, optical, luminescence and related properties of low dimensional systems,�?? Advances In Physics 50, 1-208 (2001).
[CrossRef]

J. Am. Chem. Soc. (1)

X. F. Qiu, C. Burda, R. L. Fu, L. Pu, H. Y. Chen, J. J. Zhu, �??Heterostructured Bi2Se3 nanowires with periodic phase boundaries,�?? J. Am. Chem. Soc. 126, 16276-16277 (2004).
[CrossRef] [PubMed]

J. of Appl. Phys. (1)

K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, M. Horie, "Spectroscopic ellipsometry of epitaxial ZnO layer on sapphire substrate," J. of Appl. Phys. 87, 7820-7824 (2000).
[CrossRef]

J. Phys. Chem. B. (2)

A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, �??The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation,�?? J. Phys. Chem. B. 104, 1715-1723 (2000).
[CrossRef]

L. S. Huang, S. Wright, S. Yang, D. Z. Shen, B. X. Gu, Y. W. Du, �??ZnO well-faceted fibers with periodic junctions,�?? J. Phys. Chem. B. 108, 19901-19903 (2004).
[CrossRef]

J. Phys.: Condens. Matter. (1)

Z. L. Wang, �??Zinc oxide nanostructures: growth, properties and applications,�?? J. Phys.: Condens. Matter. 16, 829-858 (2004).
[CrossRef]

Mater. Sci. Eng. (1)

S. I. Wright, B. L. Adams, K. Kunze, �??Application of new automatic lattice orientation measurement technique to polycrystalline aluminum,�?? Mater. Sci. Eng. A 160, 229-240 (1993).
[CrossRef]

Nano Lett. (1)

C. J. Barrelet, A. B. Greytak, C. M. Lieber, �??Nanowire photonic circuit elements,�?? Nano Lett. 4, 1981-1985. (2004).
[CrossRef]

Nat. Mater. (3)

J. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, R. J. Saykally, �??Single gallium nitride nanowire lasers,�?? Nat. Mater. 1, 106-110. (2002).
[CrossRef]

Z. R. Tian, J. Voigt, J. Liu, B. Mckenzie, M. McDermott, M. Rodriguez, H. Konishi, H. F. Xu, �??Complex and oriented ZnO nanostructures,�?? Nat. Mater. 2, 821-826 (2003).
[CrossRef] [PubMed]

L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, A. P. Alivisatos, �??Controlled growth of tetrapod-branched inorganic nanocrystals,�?? Nat. Mater. 2, 382-385 (2003).
[CrossRef] [PubMed]

Nature (3)

Z. Yao, H. Postma, L. Balents, C. Dekker, �??Carbon nanotube intramolecular junctions,�?? Nature 402, 273-276 (1999).
[CrossRef]

X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. C. Scher, A. Kadavanich, A. P. Alivisatos, �??Shape control of CdSe nanocrystals,�?? Nature 404, 59-61 (2000).
[CrossRef] [PubMed]

R. Jin, , Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, C. A. Mirkin, �??Controlling anisotropic nanoparticle growth through plasmon excitation,�?? Nature 425, 487-490 (2003).
[CrossRef] [PubMed]

Science (3)

M. Law, D. Sirbuly, J. Johnson, J. Goldberger, R. Saykally, P. Yang, �??Ultralong nanoribbon waveguides for sub-wavelength photonics integration,�?? Science 305, 1269-1271 (2004).
[CrossRef] [PubMed]

A. P. Alivisatos, �??Semiconductor Clusters, Nanocrystals, and Quantum Dots,�?? Science 271, 933-937 (1996).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, �??Room-temperature ultraviolet nanowire nanolasers,�?? Science 292, 1897-1899. (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM images of synthesized ZnO microfibers. (a) Low magnification. (b) High magnification image of a fiber profile. (c) High magnification image of a fiber surface. Scale bars are 20 µm (a), 2 µm (b), and 1 µm (c). (d) Crystal model for the fiber.

Fig. 2.
Fig. 2.

Optical micrograph and schematic illustrations of visible light propagation in the well-faceted ZnO fiber. (a) Optical image of single ZnO fiber, scale bar is 10 µm. (b) Light transmission in the junction-prism structure, upper shows luminance contrast.

Fig. 3.
Fig. 3.

Photoluminescence images of the emitting light propagation in well-faceted ZnO fiber (a, b). The emission intensity increases with increasing the space between the two junctions (c). Scale bars are 100 µm (a), 40 µm (b), and 20 µm (c), respectively.

Fig. 4.
Fig. 4.

The schematic illustrations show that the emitting centers’ region within a fiber (a), and the spontaneous green light propagating along the stem and tuned by junction-prisms which obey the optically total-reflection condition (b).

Metrics