Abstract

We have established a transportable frequency measurement system using an optical frequency comb linked to a commercial Cs atomic clock, which is in turn linked to international atomic time (TAI) through global positioning system (GPS) time. An iodine-stabilized Nd:YAG laser is used as a flywheel in the frequency measurement system. This system is used to measure the absolute frequency of the clock transition of 87Sr in an optical lattice. We obtained a fractional uncertainty of 2×10-14 in the frequency measurement with a total averaging time of ~105 s over 9 days.

©2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks

Daisuke Akamatsu, Masami Yasuda, Hajime Inaba, Kazumoto Hosaka, Takehiko Tanabe, Atsushi Onae, and Feng-Lei Hong
Opt. Express 22(7) 7898-7905 (2014)

Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement

Kensuke Matsubara, Hidekazu Hachisu, Ying Li, Shigeo Nagano, Clayton Locke, Asahiko Nogami, Masatoshi Kajita, Kazuhiro Hayasaka, Tetsuya Ido, and Mizuhiko Hosokawa
Opt. Express 20(20) 22034-22041 (2012)

SI-traceable measurement of an optical frequency at the low 10−16 level without a local primary standard

Hidekazu Hachisu, Gérard Petit, Fumimaru Nakagawa, Yuko Hanado, and Tetsuya Ido
Opt. Express 25(8) 8511-8523 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
    [Crossref]
  2. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [Crossref] [PubMed]
  3. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref] [PubMed]
  4. J. C. Knight, “Photonic crystal fiber,” Nature 424, 847–851 (2003).
    [Crossref] [PubMed]
  5. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
    [Crossref] [PubMed]
  6. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–669 (2005).
    [Crossref] [PubMed]
  7. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of the optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
    [Crossref]
  8. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
    [Crossref] [PubMed]
  9. E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, Chr. Tamm, and S. G. Karshenboim, “Limit on the present temporal variation of the fine structure constant,” Phys. Rev. Lett. 93, 170801 (2004).
    [Crossref] [PubMed]
  10. H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single ion” Science 306, 1355–1358 (2004).
    [Crossref] [PubMed]
  11. G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “Optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
    [Crossref] [PubMed]
  12. C. W. Oates, E. A. Curtis, and L. Hollberg, “Improved short-term stability of optical frequency standards: approaching 1Hz in 1s with the Ca standard at 657 nm,” Opt. Lett. 25, 1603–1605 (2000).
    [Crossref]
  13. F. Pereira Dos Santos, H. Marion, S. Bize, Y. Sortais, A. Clairon, and C. Salomon, “Controlling the cold collision shift in high precision atomic interferometry,” Phys. Rev. Lett. 89, 233004 (2002).
    [Crossref] [PubMed]
  14. H. Katori, “Spectroscopy of strontium atoms in the Lamb-Dicke confinement,” in Proceedings of the 6th Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 323–330.
    [Crossref]
  15. H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, “Ultrastable optical clock with neutral atoms in an engineered light shift trap,” Phys. Rev. Lett. 91, 173005 (2003).
    [Crossref] [PubMed]
  16. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
    [Crossref] [PubMed]
  17. F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
    [Crossref]
  18. H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
    [Crossref]
  19. T. Ido and H. Katori, “Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime,” Phys. Rev. Lett. 91, 053001 (2003).
    [Crossref] [PubMed]
  20. M. Takamoto and H. Katori, “Spectroscopy of the 1S0 - 3P0 clock transition of 87Sr in an optical lattice,” Phys. Rev. Lett. 91, 223001 (2003).
    [Crossref] [PubMed]
  21. F. -L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
    [Crossref]
  22. F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235, 377–385 (2004).
    [Crossref]
  23. F.-L. Hong, S. A. Diddams, R. Guo, Z.-Y. Bi, A. Onae, H. Inaba, J. Ishikawa, K. Okumura, D. Katsuragi, J. Hirata, T. Shimizu, T. Kurosu, Y. Koga, and H. Matsumoto, “Frequency measurements and hyperfine structure of the R(85)33-0 transition of molecular iodine with a femtosecond optical comb,” J. Opt. Soc. Am. B 21, 88–95 (2004).
    [Crossref]
  24. F. -L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28, 2324–2326 (2003).
    [Crossref] [PubMed]
  25. W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS: Primary tool for time transfer,” Proc. IEEE 87, 163–172 (1999).
    [Crossref]
  26. Bureau International des Poids et Mesures (BIPM), Circular T, No. 200, (August 2004), http://www1.bipm.org/en/scientific/tai/time_ftp.html.
  27. I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
    [Crossref]
  28. K. M. Larson and J. Levine, “Carrier-phase time transfer,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46, 1001–1012 (1999).
    [Crossref]
  29. J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
    [Crossref]

2005 (2)

2004 (5)

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, Chr. Tamm, and S. G. Karshenboim, “Limit on the present temporal variation of the fine structure constant,” Phys. Rev. Lett. 93, 170801 (2004).
[Crossref] [PubMed]

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single ion” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235, 377–385 (2004).
[Crossref]

F.-L. Hong, S. A. Diddams, R. Guo, Z.-Y. Bi, A. Onae, H. Inaba, J. Ishikawa, K. Okumura, D. Katsuragi, J. Hirata, T. Shimizu, T. Kurosu, Y. Koga, and H. Matsumoto, “Frequency measurements and hyperfine structure of the R(85)33-0 transition of molecular iodine with a femtosecond optical comb,” J. Opt. Soc. Am. B 21, 88–95 (2004).
[Crossref]

2003 (8)

F. -L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28, 2324–2326 (2003).
[Crossref] [PubMed]

T. Ido and H. Katori, “Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime,” Phys. Rev. Lett. 91, 053001 (2003).
[Crossref] [PubMed]

M. Takamoto and H. Katori, “Spectroscopy of the 1S0 - 3P0 clock transition of 87Sr in an optical lattice,” Phys. Rev. Lett. 91, 223001 (2003).
[Crossref] [PubMed]

I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
[Crossref]

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[Crossref]

J. C. Knight, “Photonic crystal fiber,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of the optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[Crossref]

H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, “Ultrastable optical clock with neutral atoms in an engineered light shift trap,” Phys. Rev. Lett. 91, 173005 (2003).
[Crossref] [PubMed]

2002 (2)

F. Pereira Dos Santos, H. Marion, S. Bize, Y. Sortais, A. Clairon, and C. Salomon, “Controlling the cold collision shift in high precision atomic interferometry,” Phys. Rev. Lett. 89, 233004 (2002).
[Crossref] [PubMed]

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “Optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[Crossref] [PubMed]

2001 (1)

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

2000 (3)

C. W. Oates, E. A. Curtis, and L. Hollberg, “Improved short-term stability of optical frequency standards: approaching 1Hz in 1s with the Ca standard at 657 nm,” Opt. Lett. 25, 1603–1605 (2000).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

1999 (5)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
[Crossref]

K. M. Larson and J. Levine, “Carrier-phase time transfer,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46, 1001–1012 (1999).
[Crossref]

F. -L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[Crossref]

W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS: Primary tool for time transfer,” Proc. IEEE 87, 163–172 (1999).
[Crossref]

1998 (1)

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[Crossref]

Azoubib, J.

W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS: Primary tool for time transfer,” Proc. IEEE 87, 163–172 (1999).
[Crossref]

Bartels, A.

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–669 (2005).
[Crossref] [PubMed]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Barwood, G. P.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single ion” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

Bergquist, J. C.

Bi, Z.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Bi, Z.-Y.

Binnewies, T.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “Optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[Crossref] [PubMed]

Bize, S.

Brusch, A.

I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
[Crossref]

Clairon, A.

F. Pereira Dos Santos, H. Marion, S. Bize, Y. Sortais, A. Clairon, and C. Salomon, “Controlling the cold collision shift in high precision atomic interferometry,” Phys. Rev. Lett. 89, 233004 (2002).
[Crossref] [PubMed]

Courtillot, I.

I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
[Crossref]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

Curtis, E. A.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

C. W. Oates, E. A. Curtis, and L. Hollberg, “Improved short-term stability of optical frequency standards: approaching 1Hz in 1s with the Ca standard at 657 nm,” Opt. Lett. 25, 1603–1605 (2000).
[Crossref]

Degenhardt, C.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “Optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[Crossref] [PubMed]

Diddams, S. A.

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–669 (2005).
[Crossref] [PubMed]

F.-L. Hong, S. A. Diddams, R. Guo, Z.-Y. Bi, A. Onae, H. Inaba, J. Ishikawa, K. Okumura, D. Katsuragi, J. Hirata, T. Shimizu, T. Kurosu, Y. Koga, and H. Matsumoto, “Frequency measurements and hyperfine structure of the R(85)33-0 transition of molecular iodine with a femtosecond optical comb,” J. Opt. Soc. Am. B 21, 88–95 (2004).
[Crossref]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[Crossref]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Drullinger, R. E.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Ertmer, W.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[Crossref]

Gill, P.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single ion” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

Guo, R.

Hall, J. L.

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

F. -L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[Crossref]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Helmcke, J.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “Optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[Crossref] [PubMed]

Higashi, R.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Hinderthur, H.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[Crossref]

Hirata, J.

Hollberg, L.

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–669 (2005).
[Crossref] [PubMed]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

C. W. Oates, E. A. Curtis, and L. Hollberg, “Improved short-term stability of optical frequency standards: approaching 1Hz in 1s with the Ca standard at 657 nm,” Opt. Lett. 25, 1603–1605 (2000).
[Crossref]

Hollberg, L. W.

Holman, K. W.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Hong, F. -L.

F. -L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett. 28, 2324–2326 (2003).
[Crossref] [PubMed]

F. -L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[Crossref]

Hong, F.-L.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235, 377–385 (2004).
[Crossref]

F.-L. Hong, S. A. Diddams, R. Guo, Z.-Y. Bi, A. Onae, H. Inaba, J. Ishikawa, K. Okumura, D. Katsuragi, J. Hirata, T. Shimizu, T. Kurosu, Y. Koga, and H. Matsumoto, “Frequency measurements and hyperfine structure of the R(85)33-0 transition of molecular iodine with a femtosecond optical comb,” J. Opt. Soc. Am. B 21, 88–95 (2004).
[Crossref]

Huang, G.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single ion” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

Ido, T.

T. Ido and H. Katori, “Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime,” Phys. Rev. Lett. 91, 053001 (2003).
[Crossref] [PubMed]

H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
[Crossref]

Inaba, H.

Ishikawa, J.

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235, 377–385 (2004).
[Crossref]

F.-L. Hong, S. A. Diddams, R. Guo, Z.-Y. Bi, A. Onae, H. Inaba, J. Ishikawa, K. Okumura, D. Katsuragi, J. Hirata, T. Shimizu, T. Kurosu, Y. Koga, and H. Matsumoto, “Frequency measurements and hyperfine structure of the R(85)33-0 transition of molecular iodine with a femtosecond optical comb,” J. Opt. Soc. Am. B 21, 88–95 (2004).
[Crossref]

F. -L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[Crossref]

Itano, W. M.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Jiang, J.

Jones, D. J.

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Jones, R. J.

Karshenboim, S. G.

E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, Chr. Tamm, and S. G. Karshenboim, “Limit on the present temporal variation of the fine structure constant,” Phys. Rev. Lett. 93, 170801 (2004).
[Crossref] [PubMed]

Katori, H.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, “Ultrastable optical clock with neutral atoms in an engineered light shift trap,” Phys. Rev. Lett. 91, 173005 (2003).
[Crossref] [PubMed]

T. Ido and H. Katori, “Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime,” Phys. Rev. Lett. 91, 053001 (2003).
[Crossref] [PubMed]

M. Takamoto and H. Katori, “Spectroscopy of the 1S0 - 3P0 clock transition of 87Sr in an optical lattice,” Phys. Rev. Lett. 91, 223001 (2003).
[Crossref] [PubMed]

H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
[Crossref]

H. Katori, “Spectroscopy of strontium atoms in the Lamb-Dicke confinement,” in Proceedings of the 6th Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 323–330.
[Crossref]

Katsuragi, D.

Kitching, J.

Klein, H. A.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single ion” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

Klepczynski, W. J.

W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS: Primary tool for time transfer,” Proc. IEEE 87, 163–172 (1999).
[Crossref]

Knight, J. C.

J. C. Knight, “Photonic crystal fiber,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

Koga, Y.

Kolker, D.

I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
[Crossref]

Kovacich, R. P.

I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
[Crossref]

Kurosu, T.

Kuwata-Gonokami, M.

H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
[Crossref]

Larson, K. M.

K. M. Larson and J. Levine, “Carrier-phase time transfer,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46, 1001–1012 (1999).
[Crossref]

Lea, S. N.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single ion” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

Lee, W. D.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Lemonde, R.

I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
[Crossref]

Levine, J.

K. M. Larson and J. Levine, “Carrier-phase time transfer,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46, 1001–1012 (1999).
[Crossref]

Lewandowski, W.

W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS: Primary tool for time transfer,” Proc. IEEE 87, 163–172 (1999).
[Crossref]

Lipphardt, B.

E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, Chr. Tamm, and S. G. Karshenboim, “Limit on the present temporal variation of the fine structure constant,” Phys. Rev. Lett. 93, 170801 (2004).
[Crossref] [PubMed]

Ma, L.-S.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[Crossref]

F. -L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[Crossref]

Margolis, H. S.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single ion” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

Marion, H.

F. Pereira Dos Santos, H. Marion, S. Bize, Y. Sortais, A. Clairon, and C. Salomon, “Controlling the cold collision shift in high precision atomic interferometry,” Phys. Rev. Lett. 89, 233004 (2002).
[Crossref] [PubMed]

Matsumoto, H.

Minoshima, K.

Nakagawa, K.

Oates, C.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Oates, C. W.

Okumura, K.

Onae, A.

Oskay, W. H.

Ovsiannikov, V. D.

H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, “Ultrastable optical clock with neutral atoms in an engineered light shift trap,” Phys. Rev. Lett. 91, 173005 (2003).
[Crossref] [PubMed]

Pal’chikov, V. G.

H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, “Ultrastable optical clock with neutral atoms in an engineered light shift trap,” Phys. Rev. Lett. 91, 173005 (2003).
[Crossref] [PubMed]

Peik, E.

E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, Chr. Tamm, and S. G. Karshenboim, “Limit on the present temporal variation of the fine structure constant,” Phys. Rev. Lett. 93, 170801 (2004).
[Crossref] [PubMed]

Peng, J. L.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[Crossref]

Peng, J.-L.

Pereira Dos Santos, F.

F. Pereira Dos Santos, H. Marion, S. Bize, Y. Sortais, A. Clairon, and C. Salomon, “Controlling the cold collision shift in high precision atomic interferometry,” Phys. Rev. Lett. 89, 233004 (2002).
[Crossref] [PubMed]

Quessada, a.

I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
[Crossref]

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of the optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[Crossref]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Riehle, F.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “Optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[Crossref] [PubMed]

Robertsson, L.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[Crossref]

Rovera, G. D.

I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
[Crossref]

Ruschewitz, F.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[Crossref]

Salomon, C.

F. Pereira Dos Santos, H. Marion, S. Bize, Y. Sortais, A. Clairon, and C. Salomon, “Controlling the cold collision shift in high precision atomic interferometry,” Phys. Rev. Lett. 89, 233004 (2002).
[Crossref] [PubMed]

Schaffrath, N.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[Crossref]

Schibli, T. R.

Schnatz, H.

E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, Chr. Tamm, and S. G. Karshenboim, “Limit on the present temporal variation of the fine structure constant,” Phys. Rev. Lett. 93, 170801 (2004).
[Crossref] [PubMed]

Schneider, T.

E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, Chr. Tamm, and S. G. Karshenboim, “Limit on the present temporal variation of the fine structure constant,” Phys. Rev. Lett. 93, 170801 (2004).
[Crossref] [PubMed]

Sengstock, K.

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[Crossref]

Shimizu, T.

Sortais, Y.

F. Pereira Dos Santos, H. Marion, S. Bize, Y. Sortais, A. Clairon, and C. Salomon, “Controlling the cold collision shift in high precision atomic interferometry,” Phys. Rev. Lett. 89, 233004 (2002).
[Crossref] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Sterr, U.

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “Optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[Crossref] [PubMed]

Szymaniec, K.

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single ion” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

Takamoto, M.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, “Ultrastable optical clock with neutral atoms in an engineered light shift trap,” Phys. Rev. Lett. 91, 173005 (2003).
[Crossref] [PubMed]

M. Takamoto and H. Katori, “Spectroscopy of the 1S0 - 3P0 clock transition of 87Sr in an optical lattice,” Phys. Rev. Lett. 91, 223001 (2003).
[Crossref] [PubMed]

Tamm, Chr.

E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, Chr. Tamm, and S. G. Karshenboim, “Limit on the present temporal variation of the fine structure constant,” Phys. Rev. Lett. 93, 170801 (2004).
[Crossref] [PubMed]

Udem, Th.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

Vogel, K. R.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Wilpers, G.

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667–669 (2005).
[Crossref] [PubMed]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “Optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[Crossref] [PubMed]

Windeler, R. S.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Wineland, D. J.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

Ye, J.

J. Ye, J.-L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, “Delivery of high-stability optical and microwave frequency standards over an optical fiber network,” J. Opt. Soc. Am. B 20, 1459–1467 (2003).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

F. -L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[Crossref]

Yoda, J.

F. -L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[Crossref]

Zhang, Y.

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235, 377–385 (2004).
[Crossref]

Zondy, J.-J.

I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
[Crossref]

Zucco, M.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

IEEE Trans. Instrum. Meas. (1)

F. -L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. (1)

K. M. Larson and J. Levine, “Carrier-phase time transfer,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 46, 1001–1012 (1999).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Soc. Jpn. (1)

H. Katori, T. Ido, and M. Kuwata-Gonokami, “Optimal design of dipole potentials for efficient loading of Sr atoms,” J. Phys. Soc. Jpn. 68, 2479–2482 (1999).
[Crossref]

Metrologia (1)

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of the optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[Crossref]

Nature (2)

J. C. Knight, “Photonic crystal fiber,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

F.-L. Hong, J. Ishikawa, Y. Zhang, R. Guo, A. Onae, and H. Matsumoto, “Frequency reproducibility of an iodine-stabilized Nd:YAG laser at 532 nm,” Opt. Commun. 235, 377–385 (2004).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

I. Courtillot, a. Quessada, R. P. Kovacich, A. Brusch, D. Kolker, J.-J. Zondy, G. D. Rovera, and R. Lemonde, “Clock transition for a future optical frequency standard with trapped atoms” Phys. Rev. A 68, 030501 (2003).
[Crossref]

Phys. Rev. Lett. (9)

H. Katori, M. Takamoto, V. G. Pal’chikov, and V. D. Ovsiannikov, “Ultrastable optical clock with neutral atoms in an engineered light shift trap,” Phys. Rev. Lett. 91, 173005 (2003).
[Crossref] [PubMed]

F. Pereira Dos Santos, H. Marion, S. Bize, Y. Sortais, A. Clairon, and C. Salomon, “Controlling the cold collision shift in high precision atomic interferometry,” Phys. Rev. Lett. 89, 233004 (2002).
[Crossref] [PubMed]

G. Wilpers, T. Binnewies, C. Degenhardt, U. Sterr, J. Helmcke, and F. Riehle, “Optical clock with ultracold neutral atoms,” Phys. Rev. Lett. 89, 230801 (2002).
[Crossref] [PubMed]

F. Ruschewitz, J. L. Peng, H. Hinderthur, N. Schaffrath, K. Sengstock, and W. Ertmer, “Sub-kilohertz optical spectroscopy with a time domain atom interferometer,” Phys. Rev. Lett. 80, 3173–3176 (1998).
[Crossref]

T. Ido and H. Katori, “Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime,” Phys. Rev. Lett. 91, 053001 (2003).
[Crossref] [PubMed]

M. Takamoto and H. Katori, “Spectroscopy of the 1S0 - 3P0 clock transition of 87Sr in an optical lattice,” Phys. Rev. Lett. 91, 223001 (2003).
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref] [PubMed]

E. Peik, B. Lipphardt, H. Schnatz, T. Schneider, Chr. Tamm, and S. G. Karshenboim, “Limit on the present temporal variation of the fine structure constant,” Phys. Rev. Lett. 93, 170801 (2004).
[Crossref] [PubMed]

Proc. IEEE (1)

W. Lewandowski, J. Azoubib, and W. J. Klepczynski, “GPS: Primary tool for time transfer,” Proc. IEEE 87, 163–172 (1999).
[Crossref]

Science (4)

H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, “Hertz-level measurement of the optical clock frequency in a single ion” Science 306, 1355–1358 (2004).
[Crossref] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825–828 (2001).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843–1845 (2004).
[Crossref] [PubMed]

Other (2)

H. Katori, “Spectroscopy of strontium atoms in the Lamb-Dicke confinement,” in Proceedings of the 6th Symposium on Frequency Standards and Metrology, P. Gill, ed. (World Scientific, Singapore, 2002), pp. 323–330.
[Crossref]

Bureau International des Poids et Mesures (BIPM), Circular T, No. 200, (August 2004), http://www1.bipm.org/en/scientific/tai/time_ftp.html.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the experimental setup. AOM, acousto-optic modulator; SYN, synthesizer; PLL, phase-lock loop; PCF, photonic crystal fiber; DM, dichroic mirror; D, detector; PBS, polarization beam splitter; AMP, amplifier; SMF, single-mode fiber; PZT, piezoelectric transducer; GPS, global positioning system.
Fig. 2.
Fig. 2. Allan standard deviation of the commercial Cs clock (black solid curve), an H-maser (dashed curve), the iodine-stabilized Nd:YAG laser (green solid curve), the Sr lattice clock (dotted line) and the measured beat frequency between the Nd:YAG laser and the clock laser (curve with filled circles).
Fig. 3.
Fig. 3. (a) Measured AOM offset frequency δ(t). (b) Measured clock-laser frequency f c(t) using the comb referenced to the commercially available Cs clock. (c) Absolute frequency of the clock transition ν 0(k) deduced from δ(t) and f c(t). (d) Histogram of ν 0(k) with a Gaussian fitting.
Fig. 4.
Fig. 4. Spectra of the original comb of the Ti:sapphire laser (dashed curve) and the broadened comb after the photonic crystal fiber (solid curve). For the frequency measurement, beat note frequencies were observed between the clock laser and the broadened comb at 698 nm, and between the Nd:YAG laser and the broadened comb at 1064 nm.
Fig. 5.
Fig. 5. (a) Measured AOM offset frequency δ(t). (b) Measured clock laser frequency f c(t) using the comb locked to the iodine-stabilized Nd:YAG laser. (c) Absolute frequency of the clock transition ν 0(k) deduced from δ(t) and f c(t). (d) Histogram of ν 0(k) with a Gaussian fitting.
Fig. 6.
Fig. 6. Absolute frequency measurement of the 1 S 0 - 3 P 0 transition of 87Sr atoms in an optical lattice. Data shown in this figure do not include systematic corrections.
Fig. 7.
Fig. 7. Time interval between the 1 p.p.s. signals from the Cs clock and the GPS-DO, started with the Cs clock signal and stopped with the GPS-DO signal. The slope α indicates the frequency difference between the two clocks.

Metrics