Abstract

Non-degenerate fs pump-probe experiments in the UV-visible range for ultrafast carrier dynamics study of InGaN with adjustable pump and probe photon energies are implemented with simultaneously multi-wavelength second-harmonic generation (SHG) of a 10 fs Ti:sapphire laser. The multi-wavelength SHG is realized with two β-barium borate crystals of different cutting angles. The full-widths at half-maximum of the SHG pulses are around 150 fs, which are obtained from the cross-correlation measurement with a reverse-biased 280-nm light-emitting diode as the two-photon absorption photo-detector. Such pulses are used to perform non-degenerate pump-probe experiments on an InGaN thin film, in which indium-rich nano-clusters and compositional fluctuations have been identified. Relaxation of carriers from the pump level to the probe one through the scattering-induced local thermalization (<1 ps) and then the carrier-transport-dominating global thermalization (in several ps) processes is observed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer-Verlag, Berlin, 1996).
  2. A. Othonos, �??Probing Ultrafast Carrier and Phonon Dynamics in Semiconductors,�?? J. Appl. Phys. 83, 1789-1830 (1998).
    [CrossRef]
  3. J. Y. Sohn, Y. H. Ahn, K. J. Yee, and D. S. Kim, �??Two-color Femtosecond Experiments by Use of Two Independently Tunable Ti:sapphire Lasers with a Sample-and Hold Switch,�?? Appl. Opt. 38, 5889-5902 (1999).
    [CrossRef]
  4. R. K. Shelton, L. �??S. Ma, H.C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye �??Phase-Coherent Optical Pulse Synthesis from Separate Femtosecond Lasers,�?? Science 293, 1286-1289 (2001).
    [CrossRef] [PubMed]
  5. T. Katayama and H. Kawaguchi, �??Measurement of Ultrafast Cross-Gain Saturation Dynamics of a Semiconductor Optical Amplifier Using Two-Color Pump-Probe Technique,�?? IEEE Photo. Tech. Lett. 16, 855-857 (2004).
    [CrossRef]
  6. Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita and S. Nakamura, �??Dynamics of Optical Gain in InxGa1-xN Multi-quantum-well-based Laser Diodes,�?? Appl. Phys. Lett. 77, 2151-2153 (2000).
    [CrossRef]
  7. �?. �?zgür, M. J. Bergmann, H. C. Casey, Jr., H. O. Everitt, A. C. Abare, S. Keller, and S. P. DenBaars, �??Ultrafast Optical Characterization of Carrier Capture Times in InxGa1-xN Multiple Quantum Wells,�?? Appl. Phys. Lett. 77, 109-111 (2000).
    [CrossRef]
  8. J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, �??Probing Strained InGaN/GaN Nanostructures with Ultrashort Acoustic Phonon Wave Packets Generated by Femtosecond Lasers,�?? Appl. Phys. Lett. 80, 4723-4725 (2002).
    [CrossRef]
  9. �?. �?zgür and H. O. Everitt, �??Ultrafast Carrier relaxation in GaN, In0.05Ga0.95N, and an In0.07Ga0.93N/In0.12Ga0.88N Multiple Quantum Well,�?? Phys. Rev. B 67, 155308-1-9 (2003).
    [CrossRef]
  10. S. H. Ashworth, M. Joschko, M. Woerner, E. Riedle, and T. Elsaesser, �??Generation of 16-fs pulses at 425 nm by extracavity frequency doubling of a mode-locked Ti:sapphire laser, �?? Opt. Lett. 20, 2120-2122 (1995).
    [CrossRef] [PubMed]
  11. F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, �??The Two-Photon Absorption Semiconductor Waveguide Autocorrelator,�?? IEEE J. Quantum Electron 30, 838-845 (1994).
    [CrossRef]
  12. H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, �??Ultrafast Carrier Dynamics in an InGaN Thin Film,�?? J. Appl. Phys. 97, 033704-1-4 (2005).
  13. S. W. Feng, E. C. Lin, T. Y. Tang, Y. C. Cheng, H. C. Wang, C. C. Yang, K. J. Ma, K. H. Kim, C. H. Shen, L. C. Chen, J. Y. Lin and H. X. Jiang, �??Thermal Annealing Effects of an InGaN Film with an Avearge Indium Mole Fraction of 0.31,�?? Appl. Phys. Lett. 83, 3906-3908 (2003).
    [CrossRef]
  14. H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, �??Carrier Relaxation in InGaN/GaN Quantum Wells with Nonometer-scale Cluster Structures,�?? Appl. Phys. Lett. 85, 1371-1373 (2004).
    [CrossRef]
  15. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, �??Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser, �?? Opt. Lett. 24, 411-413 (1999).
    [CrossRef]

Appl. Opt. (1)

J. Y. Sohn, Y. H. Ahn, K. J. Yee, and D. S. Kim, �??Two-color Femtosecond Experiments by Use of Two Independently Tunable Ti:sapphire Lasers with a Sample-and Hold Switch,�?? Appl. Opt. 38, 5889-5902 (1999).
[CrossRef]

Appl. Phys. Lett. (5)

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita and S. Nakamura, �??Dynamics of Optical Gain in InxGa1-xN Multi-quantum-well-based Laser Diodes,�?? Appl. Phys. Lett. 77, 2151-2153 (2000).
[CrossRef]

�?. �?zgür, M. J. Bergmann, H. C. Casey, Jr., H. O. Everitt, A. C. Abare, S. Keller, and S. P. DenBaars, �??Ultrafast Optical Characterization of Carrier Capture Times in InxGa1-xN Multiple Quantum Wells,�?? Appl. Phys. Lett. 77, 109-111 (2000).
[CrossRef]

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, �??Probing Strained InGaN/GaN Nanostructures with Ultrashort Acoustic Phonon Wave Packets Generated by Femtosecond Lasers,�?? Appl. Phys. Lett. 80, 4723-4725 (2002).
[CrossRef]

S. W. Feng, E. C. Lin, T. Y. Tang, Y. C. Cheng, H. C. Wang, C. C. Yang, K. J. Ma, K. H. Kim, C. H. Shen, L. C. Chen, J. Y. Lin and H. X. Jiang, �??Thermal Annealing Effects of an InGaN Film with an Avearge Indium Mole Fraction of 0.31,�?? Appl. Phys. Lett. 83, 3906-3908 (2003).
[CrossRef]

H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, �??Carrier Relaxation in InGaN/GaN Quantum Wells with Nonometer-scale Cluster Structures,�?? Appl. Phys. Lett. 85, 1371-1373 (2004).
[CrossRef]

IEEE J. Quantum Electron (1)

F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, �??The Two-Photon Absorption Semiconductor Waveguide Autocorrelator,�?? IEEE J. Quantum Electron 30, 838-845 (1994).
[CrossRef]

IEEE Photo. Tech. Lett. (1)

T. Katayama and H. Kawaguchi, �??Measurement of Ultrafast Cross-Gain Saturation Dynamics of a Semiconductor Optical Amplifier Using Two-Color Pump-Probe Technique,�?? IEEE Photo. Tech. Lett. 16, 855-857 (2004).
[CrossRef]

J. Appl. Phys. (2)

H. C. Wang, Y. C. Lu, C. C. Teng, Y. S. Chen, C. C. Yang, K. J. Ma, C. C. Pan, and J. I. Chyi, �??Ultrafast Carrier Dynamics in an InGaN Thin Film,�?? J. Appl. Phys. 97, 033704-1-4 (2005).

A. Othonos, �??Probing Ultrafast Carrier and Phonon Dynamics in Semiconductors,�?? J. Appl. Phys. 83, 1789-1830 (1998).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

�?. �?zgür and H. O. Everitt, �??Ultrafast Carrier relaxation in GaN, In0.05Ga0.95N, and an In0.07Ga0.93N/In0.12Ga0.88N Multiple Quantum Well,�?? Phys. Rev. B 67, 155308-1-9 (2003).
[CrossRef]

Science (1)

R. K. Shelton, L. �??S. Ma, H.C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye �??Phase-Coherent Optical Pulse Synthesis from Separate Femtosecond Lasers,�?? Science 293, 1286-1289 (2001).
[CrossRef] [PubMed]

Other (1)

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer-Verlag, Berlin, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Two sets of second-harmonic spectra with the two BBO crystals pumped by the laser of 400 mW in average power. The inset shows the fundamental spectrum.

Fig. 2.
Fig. 2.

SHG spectral FWHM and conversion efficiency as functions of SHG wavelength in the two spectral bands.

Fig. 3.
Fig. 3.

Non-degenerate pump-probe experiment setup.

Fig. 4.
Fig. 4.

Normalized spectra of the pump and probe pulses measured at the sample location.

Fig. 5.
Fig. 5.

Cross-correlation traces of the probe pulses at 390 (a), 400 (b), and 410 (c) nm with the pump pulse at 390 nm measured at the sample location.

Fig. 6.
Fig. 6.

An HRTEM image of the sample.

Fig. 7.
Fig. 7.

PL spectra of the sample at various temperatures.

Fig. 8.
Fig. 8.

Differential transmission traces of the pump-probe experiment with different probe wavelengths, as labeled next to the curves, when the pump wavelength is fixed at 390 nm.

Metrics