Abstract

Doppler optical coherence tomography (DOCT) is a valuable tool for depth-resolved flow measurements in tissue. However, DOCT is insensitive to flow in the direction normal to the imaging beam and requires knowledge of the phase of the demodulated signal. We present an alternative method of extracting flow information, using speckle of conventional amplitude optical coherence tomography images. Due to the pixel-by-pixel acquisition scheme of conventional OCT, time-varying speckle is manifested as a change in OCT image spatial speckle frequencies. We tested the ability of speckle to provide quantitative flow information using an Intralipid flow phantom. Over a range of velocities, the ratio of high to low OCT image spatial frequencies was shown to bear a linear relation to flow velocity. With two dimensional imaging, flow in a tube and in vivo hamster skin was visualized. This study shows the feasibility of extracting flow from OCT images in all directions without phase information.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler Tomographic Imaging of Fluid Flow Velocity in Scattering Media,” Opt. Lett. 22, 64–66 (1997).
    [Crossref] [PubMed]
  2. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In Vivo Bidirectional Color Doppler Flow Imaging of Picoliter Blood Volumes Using Optical Coherence Tomography,” Opt. Lett. 22, 1439–1441 (1997).
    [Crossref]
  3. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity.” Opt. Lett. 25, 114–116 (2000).
    [Crossref]
  4. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol.,  121, 235–239 (2003).
    [PubMed]
  5. J. D. Briers, “Laser Doppler and Time-Varying Speckle: A Reconciliation,” J. Opt. Soc. Am. A,  13, 345–350 (1996).
    [Crossref]
  6. J.W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, New York, 1984).
  7. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
    [Crossref]
  8. A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
    [Crossref]
  9. J. D. Briers, “Speckle Fluctuations and Biomedical Optics: Implications and Applications,” Opt. Eng. 32277–283 (1993).
    [Crossref]
  10. Y. Aizu and T. Asakura, “Bio-Speckle Phonomena and Their Application to the Evaluation of Blood Flow,” Opt. Laser Tech. 23, 205–219 (1991).
    [Crossref]
  11. H. Fujii and T. Asakura, “Blood Flow Observed by Time-Varying Laser Speckle,” Opt. Lett. 10, 104–106 (1985).
    [Crossref] [PubMed]
  12. K. Gossage, T. Tkaczyk, J. Rodriguez, and J. Barton, “Texture Analysis of Optical Coherence Tomography Images: Feasibility for Tissue Classification,” J. Biomed. Opt. 8, 570–575 (2003).
    [Crossref] [PubMed]
  13. P. Yu, L. Peng, and M. Mustata, “Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue,” Opt. Lett. 29, 68–70 (2004).
    [Crossref] [PubMed]
  14. J. K. Barton, A. S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modeling,” Phys. Med. Biol. 46, 1665–1678 (2001).
    [Crossref] [PubMed]
  15. M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-Estimation Accuracy and Frame-Rate limitations in Color Doppler Optical Coherence Tomography,” Opt. Lett. 23, 1057–1059 (1998).
    [Crossref]
  16. S. Yazdanfar and J. A. Izatt, “Self-referenced Doppler optical coherence tomography,” Opt. Lett. 27, 2085–2087 (2002).
    [Crossref]
  17. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” Proc. SPIE 2678, 314–24 (1996).
    [Crossref]
  18. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in intralipid-10 % in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [Crossref] [PubMed]
  19. T. S. Tkaczyk, K. W. Gossage, and J. K. Barton, “Speckle Image Properties in Optical Coherence Tomography,” Proc. SPIE 4619, 59–77 (2002).
    [Crossref]

2004 (1)

2003 (2)

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol.,  121, 235–239 (2003).
[PubMed]

K. Gossage, T. Tkaczyk, J. Rodriguez, and J. Barton, “Texture Analysis of Optical Coherence Tomography Images: Feasibility for Tissue Classification,” J. Biomed. Opt. 8, 570–575 (2003).
[Crossref] [PubMed]

2002 (2)

T. S. Tkaczyk, K. W. Gossage, and J. K. Barton, “Speckle Image Properties in Optical Coherence Tomography,” Proc. SPIE 4619, 59–77 (2002).
[Crossref]

S. Yazdanfar and J. A. Izatt, “Self-referenced Doppler optical coherence tomography,” Opt. Lett. 27, 2085–2087 (2002).
[Crossref]

2001 (1)

J. K. Barton, A. S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modeling,” Phys. Med. Biol. 46, 1665–1678 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref]

1998 (1)

1997 (2)

1996 (2)

J. D. Briers, “Laser Doppler and Time-Varying Speckle: A Reconciliation,” J. Opt. Soc. Am. A,  13, 345–350 (1996).
[Crossref]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” Proc. SPIE 2678, 314–24 (1996).
[Crossref]

1993 (1)

J. D. Briers, “Speckle Fluctuations and Biomedical Optics: Implications and Applications,” Opt. Eng. 32277–283 (1993).
[Crossref]

1991 (2)

1985 (1)

1981 (1)

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Aizu, Y.

Y. Aizu and T. Asakura, “Bio-Speckle Phonomena and Their Application to the Evaluation of Blood Flow,” Opt. Laser Tech. 23, 205–219 (1991).
[Crossref]

Asakura, T.

Y. Aizu and T. Asakura, “Bio-Speckle Phonomena and Their Application to the Evaluation of Blood Flow,” Opt. Laser Tech. 23, 205–219 (1991).
[Crossref]

H. Fujii and T. Asakura, “Blood Flow Observed by Time-Varying Laser Speckle,” Opt. Lett. 10, 104–106 (1985).
[Crossref] [PubMed]

Barton, J.

K. Gossage, T. Tkaczyk, J. Rodriguez, and J. Barton, “Texture Analysis of Optical Coherence Tomography Images: Feasibility for Tissue Classification,” J. Biomed. Opt. 8, 570–575 (2003).
[Crossref] [PubMed]

Barton, J. K.

T. S. Tkaczyk, K. W. Gossage, and J. K. Barton, “Speckle Image Properties in Optical Coherence Tomography,” Proc. SPIE 4619, 59–77 (2002).
[Crossref]

J. K. Barton, A. S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modeling,” Phys. Med. Biol. 46, 1665–1678 (2001).
[Crossref] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In Vivo Bidirectional Color Doppler Flow Imaging of Picoliter Blood Volumes Using Optical Coherence Tomography,” Opt. Lett. 22, 1439–1441 (1997).
[Crossref]

Briers, J. D.

J. D. Briers, “Laser Doppler and Time-Varying Speckle: A Reconciliation,” J. Opt. Soc. Am. A,  13, 345–350 (1996).
[Crossref]

J. D. Briers, “Speckle Fluctuations and Biomedical Optics: Implications and Applications,” Opt. Eng. 32277–283 (1993).
[Crossref]

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Chen, Z.

Dave, D.

de Boer, J. F.

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Fujii, H.

Goldbach, T.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” Proc. SPIE 2678, 314–24 (1996).
[Crossref]

Goodman, J.W.

J.W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, New York, 1984).

Gossage, K.

K. Gossage, T. Tkaczyk, J. Rodriguez, and J. Barton, “Texture Analysis of Optical Coherence Tomography Images: Feasibility for Tissue Classification,” J. Biomed. Opt. 8, 570–575 (2003).
[Crossref] [PubMed]

Gossage, K. W.

T. S. Tkaczyk, K. W. Gossage, and J. K. Barton, “Speckle Image Properties in Optical Coherence Tomography,” Proc. SPIE 4619, 59–77 (2002).
[Crossref]

Izatt, J. A.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol.,  121, 235–239 (2003).
[PubMed]

S. Yazdanfar and J. A. Izatt, “Self-referenced Doppler optical coherence tomography,” Opt. Lett. 27, 2085–2087 (2002).
[Crossref]

J. K. Barton, A. S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modeling,” Phys. Med. Biol. 46, 1665–1678 (2001).
[Crossref] [PubMed]

M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-Estimation Accuracy and Frame-Rate limitations in Color Doppler Optical Coherence Tomography,” Opt. Lett. 23, 1057–1059 (1998).
[Crossref]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In Vivo Bidirectional Color Doppler Flow Imaging of Picoliter Blood Volumes Using Optical Coherence Tomography,” Opt. Lett. 22, 1439–1441 (1997).
[Crossref]

Kulkarni, M. D.

Milner, T. E.

Moes, C. J. M.

Mustata, M.

Nelson, J. S.

Peng, L.

Pfefer, T. J.

J. K. Barton, A. S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modeling,” Phys. Med. Biol. 46, 1665–1678 (2001).
[Crossref] [PubMed]

Prahl, S. A.

Rodriguez, J.

K. Gossage, T. Tkaczyk, J. Rodriguez, and J. Barton, “Texture Analysis of Optical Coherence Tomography Images: Feasibility for Tissue Classification,” J. Biomed. Opt. 8, 570–575 (2003).
[Crossref] [PubMed]

Rollins, A. M.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol.,  121, 235–239 (2003).
[PubMed]

Saxer, C.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref]

Schwarzmaier, H. J.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” Proc. SPIE 2678, 314–24 (1996).
[Crossref]

Tkaczyk, T.

K. Gossage, T. Tkaczyk, J. Rodriguez, and J. Barton, “Texture Analysis of Optical Coherence Tomography Images: Feasibility for Tissue Classification,” J. Biomed. Opt. 8, 570–575 (2003).
[Crossref] [PubMed]

Tkaczyk, T. S.

T. S. Tkaczyk, K. W. Gossage, and J. K. Barton, “Speckle Image Properties in Optical Coherence Tomography,” Proc. SPIE 4619, 59–77 (2002).
[Crossref]

van Gemert, M. J. C.

van Leeuwen, T. G.

van Marle, J.

van Staveren, H. J.

Welch, A. J.

Westphal, V.

J. K. Barton, A. S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modeling,” Phys. Med. Biol. 46, 1665–1678 (2001).
[Crossref] [PubMed]

Xiang, S.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref]

Yaroslavsky, A. N.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” Proc. SPIE 2678, 314–24 (1996).
[Crossref]

Yaroslavsky, I. V.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” Proc. SPIE 2678, 314–24 (1996).
[Crossref]

Yazdanfar, A. S.

J. K. Barton, A. S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modeling,” Phys. Med. Biol. 46, 1665–1678 (2001).
[Crossref] [PubMed]

Yazdanfar, S.

Yu, P.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref]

Zhao, Y.

Appl. Opt. (1)

Arch. Ophthalmol. (1)

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol.,  121, 235–239 (2003).
[PubMed]

J. Biomed. Opt. (2)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref]

K. Gossage, T. Tkaczyk, J. Rodriguez, and J. Barton, “Texture Analysis of Optical Coherence Tomography Images: Feasibility for Tissue Classification,” J. Biomed. Opt. 8, 570–575 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Opt. Eng. (1)

J. D. Briers, “Speckle Fluctuations and Biomedical Optics: Implications and Applications,” Opt. Eng. 32277–283 (1993).
[Crossref]

Opt. Laser Tech. (1)

Y. Aizu and T. Asakura, “Bio-Speckle Phonomena and Their Application to the Evaluation of Blood Flow,” Opt. Laser Tech. 23, 205–219 (1991).
[Crossref]

Opt. Lett. (7)

Phys. Med. Biol. (1)

J. K. Barton, A. S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modeling,” Phys. Med. Biol. 46, 1665–1678 (2001).
[Crossref] [PubMed]

Proc. SPIE (2)

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, and H. J. Schwarzmaier, “Optical properties of blood in the near-infrared spectral range,” Proc. SPIE 2678, 314–24 (1996).
[Crossref]

T. S. Tkaczyk, K. W. Gossage, and J. K. Barton, “Speckle Image Properties in Optical Coherence Tomography,” Proc. SPIE 4619, 59–77 (2002).
[Crossref]

Other (1)

J.W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, New York, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Graph of calculated Doppler velocity and high-low ratio (HLR) calculated from phantom experiments.

Fig. 2.
Fig. 2.

Magnitude image (left), Doppler velocity (top right) and speckle flow (bottom right) images of flowing Intralipid in a glass capillary tube. In velocity/flow images, from left to right, average flow velocities are 0, 10, 15, and 17.5 mm/s. Doppler image scale in mm/s, speckle flow image scale in arbitrary units.

Fig. 3.
Fig. 3.

Magnitude (left), speckle flow (middle) and corresponding histology (right) images of hamster skin. Regions of high HLR in the speckle flow image correspond to blood vessels seen visually in the preparation, and in histology.

Metrics