Abstract

Luminescence microscopy is used to measure the refractive index profile and molecular defect distribution of UV written waveguides with a spatial resolution of ~0.4 µm and high signal-to-noise ratio. The measurements reveal complex waveguide formation dynamics with significant topological changes in the core profile. In addition, it is observed that the waveguide formation process requires several milliseconds of UV exposure before starting.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Svalgaard, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV-writing of buried single-mode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
    [Crossref]
  2. M.Y. Park, W. Yoon, S. Han, and G. H. Song, “Fabrication of low-cost planar wavelength-selective optical add-drop multiplexer by employing UV photosensitivity,” Electron. Lett. 38, 1532–1533 (2002).
    [Crossref]
  3. G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV written channel waveguides with simultaneously defined integral gratings,” Electron. Lett. 38, 1531–1532 (2002).
    [Crossref]
  4. M. Svalgaard, K. Faerch, and L.-U. Andersen, “Variable optical attenuator fabricated by direct UV writing,” J. Light. Tech. 21, 2097–2103 (2003).
    [Crossref]
  5. M.J. Yuen, “Ultraviolet absorption studies of germanium silicate glasses,” App. Opt. 21, 136–140 (1982).
    [Crossref]
  6. L.N. Skuja, A.N. Trukhin, and A.E. Plaudis, “Luminescence in germanium-doped glassy SiO2,” Phys. Stat. Sol. A 84, K153–157 (1984).
    [Crossref]
  7. M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
    [Crossref]
  8. R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, and Y. Hama, “Relation between the 1.9 eV luminescence and 4.8 eV absorption bands in high-purity silica glass,” Appl. Phys. Lett. 54, 1650–1652 (1989).
    [Crossref]
  9. J. Canning and M.G. Sceats, “Spatial distribution of 650-nm luminescence in UV-processed germanosilicate preforms,” Opt. Lett. 19, 1119–1121 (1994).
    [PubMed]
  10. H. Presby, “Fluorescence profiling of single-mode optical fiber preforms,” Appl. Opt. 20, 446–4501981.
    [Crossref] [PubMed]
  11. G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “Defects in optical fibres in regions of high stress gradients,” Electron. Lett. 27, 1432–1433 (1991).
    [Crossref]
  12. G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “The influence of codopants and fabrication conditions on germanium defects in optical fiber preforms,” Phot. Tech. Lett. 4, 43–46 (1992).
    [Crossref]
  13. F. Ouellette, R.J. Campbell, D.L. Williams, and R. Kashyap, “Spatial distribution of UV-excited luminescence in Ge-doped fiber preforms,” Opt. Comm. 103, 85–88 (1993).
    [Crossref]
  14. M. Svalgaard, A. Harpøth, and T. Rosbirk, “Luminescence microscopy of UV written waveguides,” Conference on Bragg Gratings, Poling And Photosensitivity, Optical Society of America, Technical Digest Series 151–153 (2003).
  15. G.D. Maxwell and B.J. Ainslie, “Demonstration of a directly written directional coupler using UV induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
    [Crossref]
  16. P.J. Lemaire, R.M. Atkins, V. Mizrahi, and W.A. Reed, “High Pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
    [Crossref]
  17. D.Y. Stepanov, F. Ouellette, and G.R. Atkins, “Changes in the spatial distribution of UV-excited luminescence in Ge-doped fibre preforms during UV exposure,” Electron. Lett. 29, 1975–1977 (1993)
    [Crossref]
  18. P. Oberson, B. Gisin, B. Huttner, and N. Gisin, “Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides,” Appl. Opt. 37, 7268–7272 (1998).
    [Crossref]
  19. M. Svalgaard, “Dynamics of ultraviolet induced luminescence and fiber Bragg grating formation in the high fluence regime,” Conference on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Technical Digest Series, Vol. 22of OSA Proceedings Series (Optical Society of America, Washington, D.C., 160–163 (1995).
  20. A. Iino, M. Kuwabara, and K. Kokura, “Mechanisms of hydrogen-induced losses in silica-based optical fibers,” J. Light. Tech. 8, 1675–1679 (1990).
    [Crossref]
  21. P.J. Lemaire, A.M. Vengsarkar, W.A. Reed, and D.J. DiGiovanni, “Thermally enhanced ultraviolet photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett. 66, 2034–2036 (1995).
    [Crossref]

2003 (1)

M. Svalgaard, K. Faerch, and L.-U. Andersen, “Variable optical attenuator fabricated by direct UV writing,” J. Light. Tech. 21, 2097–2103 (2003).
[Crossref]

2002 (2)

M.Y. Park, W. Yoon, S. Han, and G. H. Song, “Fabrication of low-cost planar wavelength-selective optical add-drop multiplexer by employing UV photosensitivity,” Electron. Lett. 38, 1532–1533 (2002).
[Crossref]

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV written channel waveguides with simultaneously defined integral gratings,” Electron. Lett. 38, 1531–1532 (2002).
[Crossref]

2001 (1)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[Crossref]

1998 (1)

1995 (2)

G.D. Maxwell and B.J. Ainslie, “Demonstration of a directly written directional coupler using UV induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[Crossref]

P.J. Lemaire, A.M. Vengsarkar, W.A. Reed, and D.J. DiGiovanni, “Thermally enhanced ultraviolet photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett. 66, 2034–2036 (1995).
[Crossref]

1994 (2)

J. Canning and M.G. Sceats, “Spatial distribution of 650-nm luminescence in UV-processed germanosilicate preforms,” Opt. Lett. 19, 1119–1121 (1994).
[PubMed]

M. Svalgaard, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV-writing of buried single-mode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[Crossref]

1993 (3)

P.J. Lemaire, R.M. Atkins, V. Mizrahi, and W.A. Reed, “High Pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

D.Y. Stepanov, F. Ouellette, and G.R. Atkins, “Changes in the spatial distribution of UV-excited luminescence in Ge-doped fibre preforms during UV exposure,” Electron. Lett. 29, 1975–1977 (1993)
[Crossref]

F. Ouellette, R.J. Campbell, D.L. Williams, and R. Kashyap, “Spatial distribution of UV-excited luminescence in Ge-doped fiber preforms,” Opt. Comm. 103, 85–88 (1993).
[Crossref]

1992 (1)

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “The influence of codopants and fabrication conditions on germanium defects in optical fiber preforms,” Phot. Tech. Lett. 4, 43–46 (1992).
[Crossref]

1991 (1)

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “Defects in optical fibres in regions of high stress gradients,” Electron. Lett. 27, 1432–1433 (1991).
[Crossref]

1990 (1)

A. Iino, M. Kuwabara, and K. Kokura, “Mechanisms of hydrogen-induced losses in silica-based optical fibers,” J. Light. Tech. 8, 1675–1679 (1990).
[Crossref]

1989 (1)

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, and Y. Hama, “Relation between the 1.9 eV luminescence and 4.8 eV absorption bands in high-purity silica glass,” Appl. Phys. Lett. 54, 1650–1652 (1989).
[Crossref]

1984 (1)

L.N. Skuja, A.N. Trukhin, and A.E. Plaudis, “Luminescence in germanium-doped glassy SiO2,” Phys. Stat. Sol. A 84, K153–157 (1984).
[Crossref]

1982 (1)

M.J. Yuen, “Ultraviolet absorption studies of germanium silicate glasses,” App. Opt. 21, 136–140 (1982).
[Crossref]

1981 (1)

Ainslie, B.J.

G.D. Maxwell and B.J. Ainslie, “Demonstration of a directly written directional coupler using UV induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[Crossref]

Albanis, V.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV written channel waveguides with simultaneously defined integral gratings,” Electron. Lett. 38, 1531–1532 (2002).
[Crossref]

Andersen, L.-U.

M. Svalgaard, K. Faerch, and L.-U. Andersen, “Variable optical attenuator fabricated by direct UV writing,” J. Light. Tech. 21, 2097–2103 (2003).
[Crossref]

Atkins, G.R.

D.Y. Stepanov, F. Ouellette, and G.R. Atkins, “Changes in the spatial distribution of UV-excited luminescence in Ge-doped fibre preforms during UV exposure,” Electron. Lett. 29, 1975–1977 (1993)
[Crossref]

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “The influence of codopants and fabrication conditions on germanium defects in optical fiber preforms,” Phot. Tech. Lett. 4, 43–46 (1992).
[Crossref]

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “Defects in optical fibres in regions of high stress gradients,” Electron. Lett. 27, 1432–1433 (1991).
[Crossref]

Atkins, R.M.

P.J. Lemaire, R.M. Atkins, V. Mizrahi, and W.A. Reed, “High Pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Bjarklev, A.

M. Svalgaard, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV-writing of buried single-mode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[Crossref]

Campbell, R.J.

F. Ouellette, R.J. Campbell, D.L. Williams, and R. Kashyap, “Spatial distribution of UV-excited luminescence in Ge-doped fiber preforms,” Opt. Comm. 103, 85–88 (1993).
[Crossref]

Canning, J.

DiGiovanni, D.J.

P.J. Lemaire, A.M. Vengsarkar, W.A. Reed, and D.J. DiGiovanni, “Thermally enhanced ultraviolet photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett. 66, 2034–2036 (1995).
[Crossref]

Emmerson, G.D.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV written channel waveguides with simultaneously defined integral gratings,” Electron. Lett. 38, 1531–1532 (2002).
[Crossref]

Faerch, K.

M. Svalgaard, K. Faerch, and L.-U. Andersen, “Variable optical attenuator fabricated by direct UV writing,” J. Light. Tech. 21, 2097–2103 (2003).
[Crossref]

Gawith, C.B.E.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV written channel waveguides with simultaneously defined integral gratings,” Electron. Lett. 38, 1531–1532 (2002).
[Crossref]

Gisin, B.

Gisin, N.

Hama, Y.

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, and Y. Hama, “Relation between the 1.9 eV luminescence and 4.8 eV absorption bands in high-purity silica glass,” Appl. Phys. Lett. 54, 1650–1652 (1989).
[Crossref]

Han, S.

M.Y. Park, W. Yoon, S. Han, and G. H. Song, “Fabrication of low-cost planar wavelength-selective optical add-drop multiplexer by employing UV photosensitivity,” Electron. Lett. 38, 1532–1533 (2002).
[Crossref]

Harpøth, A.

M. Svalgaard, A. Harpøth, and T. Rosbirk, “Luminescence microscopy of UV written waveguides,” Conference on Bragg Gratings, Poling And Photosensitivity, Optical Society of America, Technical Digest Series 151–153 (2003).

Huttner, B.

Ibsen, M.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV written channel waveguides with simultaneously defined integral gratings,” Electron. Lett. 38, 1531–1532 (2002).
[Crossref]

Iino, A.

A. Iino, M. Kuwabara, and K. Kokura, “Mechanisms of hydrogen-induced losses in silica-based optical fibers,” J. Light. Tech. 8, 1675–1679 (1990).
[Crossref]

Kashyap, R.

F. Ouellette, R.J. Campbell, D.L. Williams, and R. Kashyap, “Spatial distribution of UV-excited luminescence in Ge-doped fiber preforms,” Opt. Comm. 103, 85–88 (1993).
[Crossref]

Kokura, K.

A. Iino, M. Kuwabara, and K. Kokura, “Mechanisms of hydrogen-induced losses in silica-based optical fibers,” J. Light. Tech. 8, 1675–1679 (1990).
[Crossref]

Kristensen, M.

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[Crossref]

Kuwabara, M.

A. Iino, M. Kuwabara, and K. Kokura, “Mechanisms of hydrogen-induced losses in silica-based optical fibers,” J. Light. Tech. 8, 1675–1679 (1990).
[Crossref]

Lemaire, P.J.

P.J. Lemaire, A.M. Vengsarkar, W.A. Reed, and D.J. DiGiovanni, “Thermally enhanced ultraviolet photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett. 66, 2034–2036 (1995).
[Crossref]

P.J. Lemaire, R.M. Atkins, V. Mizrahi, and W.A. Reed, “High Pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Maxwell, G.D.

G.D. Maxwell and B.J. Ainslie, “Demonstration of a directly written directional coupler using UV induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[Crossref]

Mizrahi, V.

P.J. Lemaire, R.M. Atkins, V. Mizrahi, and W.A. Reed, “High Pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Munekuni, S.

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, and Y. Hama, “Relation between the 1.9 eV luminescence and 4.8 eV absorption bands in high-purity silica glass,” Appl. Phys. Lett. 54, 1650–1652 (1989).
[Crossref]

Nockolds, C.E.

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “The influence of codopants and fabrication conditions on germanium defects in optical fiber preforms,” Phot. Tech. Lett. 4, 43–46 (1992).
[Crossref]

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “Defects in optical fibres in regions of high stress gradients,” Electron. Lett. 27, 1432–1433 (1991).
[Crossref]

Oberson, P.

Ohki, Y.

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, and Y. Hama, “Relation between the 1.9 eV luminescence and 4.8 eV absorption bands in high-purity silica glass,” Appl. Phys. Lett. 54, 1650–1652 (1989).
[Crossref]

Ouellette, F.

F. Ouellette, R.J. Campbell, D.L. Williams, and R. Kashyap, “Spatial distribution of UV-excited luminescence in Ge-doped fiber preforms,” Opt. Comm. 103, 85–88 (1993).
[Crossref]

D.Y. Stepanov, F. Ouellette, and G.R. Atkins, “Changes in the spatial distribution of UV-excited luminescence in Ge-doped fibre preforms during UV exposure,” Electron. Lett. 29, 1975–1977 (1993)
[Crossref]

Park, M.Y.

M.Y. Park, W. Yoon, S. Han, and G. H. Song, “Fabrication of low-cost planar wavelength-selective optical add-drop multiplexer by employing UV photosensitivity,” Electron. Lett. 38, 1532–1533 (2002).
[Crossref]

Plaudis, A.E.

L.N. Skuja, A.N. Trukhin, and A.E. Plaudis, “Luminescence in germanium-doped glassy SiO2,” Phys. Stat. Sol. A 84, K153–157 (1984).
[Crossref]

Poole, S.B.

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “The influence of codopants and fabrication conditions on germanium defects in optical fiber preforms,” Phot. Tech. Lett. 4, 43–46 (1992).
[Crossref]

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “Defects in optical fibres in regions of high stress gradients,” Electron. Lett. 27, 1432–1433 (1991).
[Crossref]

Poulsen, C.V.

M. Svalgaard, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV-writing of buried single-mode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[Crossref]

Poulsen, O.

M. Svalgaard, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV-writing of buried single-mode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[Crossref]

Presby, H.

Reed, W.A.

P.J. Lemaire, A.M. Vengsarkar, W.A. Reed, and D.J. DiGiovanni, “Thermally enhanced ultraviolet photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett. 66, 2034–2036 (1995).
[Crossref]

P.J. Lemaire, R.M. Atkins, V. Mizrahi, and W.A. Reed, “High Pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Rosbirk, T.

M. Svalgaard, A. Harpøth, and T. Rosbirk, “Luminescence microscopy of UV written waveguides,” Conference on Bragg Gratings, Poling And Photosensitivity, Optical Society of America, Technical Digest Series 151–153 (2003).

Sceats, M.G.

J. Canning and M.G. Sceats, “Spatial distribution of 650-nm luminescence in UV-processed germanosilicate preforms,” Opt. Lett. 19, 1119–1121 (1994).
[PubMed]

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “The influence of codopants and fabrication conditions on germanium defects in optical fiber preforms,” Phot. Tech. Lett. 4, 43–46 (1992).
[Crossref]

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “Defects in optical fibres in regions of high stress gradients,” Electron. Lett. 27, 1432–1433 (1991).
[Crossref]

Shimogaichi, Y.

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, and Y. Hama, “Relation between the 1.9 eV luminescence and 4.8 eV absorption bands in high-purity silica glass,” Appl. Phys. Lett. 54, 1650–1652 (1989).
[Crossref]

Simmons, H.W.

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “The influence of codopants and fabrication conditions on germanium defects in optical fiber preforms,” Phot. Tech. Lett. 4, 43–46 (1992).
[Crossref]

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “Defects in optical fibres in regions of high stress gradients,” Electron. Lett. 27, 1432–1433 (1991).
[Crossref]

Skuja, L.N.

L.N. Skuja, A.N. Trukhin, and A.E. Plaudis, “Luminescence in germanium-doped glassy SiO2,” Phys. Stat. Sol. A 84, K153–157 (1984).
[Crossref]

Smith, P.G.R.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV written channel waveguides with simultaneously defined integral gratings,” Electron. Lett. 38, 1531–1532 (2002).
[Crossref]

Song, G. H.

M.Y. Park, W. Yoon, S. Han, and G. H. Song, “Fabrication of low-cost planar wavelength-selective optical add-drop multiplexer by employing UV photosensitivity,” Electron. Lett. 38, 1532–1533 (2002).
[Crossref]

Stepanov, D.Y.

D.Y. Stepanov, F. Ouellette, and G.R. Atkins, “Changes in the spatial distribution of UV-excited luminescence in Ge-doped fibre preforms during UV exposure,” Electron. Lett. 29, 1975–1977 (1993)
[Crossref]

Svalgaard, M.

M. Svalgaard, K. Faerch, and L.-U. Andersen, “Variable optical attenuator fabricated by direct UV writing,” J. Light. Tech. 21, 2097–2103 (2003).
[Crossref]

M. Svalgaard, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV-writing of buried single-mode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[Crossref]

M. Svalgaard, “Dynamics of ultraviolet induced luminescence and fiber Bragg grating formation in the high fluence regime,” Conference on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Technical Digest Series, Vol. 22of OSA Proceedings Series (Optical Society of America, Washington, D.C., 160–163 (1995).

M. Svalgaard, A. Harpøth, and T. Rosbirk, “Luminescence microscopy of UV written waveguides,” Conference on Bragg Gratings, Poling And Photosensitivity, Optical Society of America, Technical Digest Series 151–153 (2003).

Tohmon, R.

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, and Y. Hama, “Relation between the 1.9 eV luminescence and 4.8 eV absorption bands in high-purity silica glass,” Appl. Phys. Lett. 54, 1650–1652 (1989).
[Crossref]

Trukhin, A.N.

L.N. Skuja, A.N. Trukhin, and A.E. Plaudis, “Luminescence in germanium-doped glassy SiO2,” Phys. Stat. Sol. A 84, K153–157 (1984).
[Crossref]

Vengsarkar, A.M.

P.J. Lemaire, A.M. Vengsarkar, W.A. Reed, and D.J. DiGiovanni, “Thermally enhanced ultraviolet photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett. 66, 2034–2036 (1995).
[Crossref]

Watts, S.P.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV written channel waveguides with simultaneously defined integral gratings,” Electron. Lett. 38, 1531–1532 (2002).
[Crossref]

Williams, D.L.

F. Ouellette, R.J. Campbell, D.L. Williams, and R. Kashyap, “Spatial distribution of UV-excited luminescence in Ge-doped fiber preforms,” Opt. Comm. 103, 85–88 (1993).
[Crossref]

Williams, R.B.

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV written channel waveguides with simultaneously defined integral gratings,” Electron. Lett. 38, 1531–1532 (2002).
[Crossref]

Yoon, W.

M.Y. Park, W. Yoon, S. Han, and G. H. Song, “Fabrication of low-cost planar wavelength-selective optical add-drop multiplexer by employing UV photosensitivity,” Electron. Lett. 38, 1532–1533 (2002).
[Crossref]

Yuen, M.J.

M.J. Yuen, “Ultraviolet absorption studies of germanium silicate glasses,” App. Opt. 21, 136–140 (1982).
[Crossref]

App. Opt. (1)

M.J. Yuen, “Ultraviolet absorption studies of germanium silicate glasses,” App. Opt. 21, 136–140 (1982).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. Tohmon, Y. Shimogaichi, S. Munekuni, Y. Ohki, and Y. Hama, “Relation between the 1.9 eV luminescence and 4.8 eV absorption bands in high-purity silica glass,” Appl. Phys. Lett. 54, 1650–1652 (1989).
[Crossref]

P.J. Lemaire, A.M. Vengsarkar, W.A. Reed, and D.J. DiGiovanni, “Thermally enhanced ultraviolet photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett. 66, 2034–2036 (1995).
[Crossref]

Electron. Lett. (7)

M. Svalgaard, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct UV-writing of buried single-mode channel waveguides in Ge-doped silica films,” Electron. Lett. 30, 1401–1402 (1994).
[Crossref]

M.Y. Park, W. Yoon, S. Han, and G. H. Song, “Fabrication of low-cost planar wavelength-selective optical add-drop multiplexer by employing UV photosensitivity,” Electron. Lett. 38, 1532–1533 (2002).
[Crossref]

G.D. Emmerson, S.P. Watts, C.B.E. Gawith, V. Albanis, M. Ibsen, R.B. Williams, and P.G.R. Smith, “Fabrication of directly UV written channel waveguides with simultaneously defined integral gratings,” Electron. Lett. 38, 1531–1532 (2002).
[Crossref]

G.D. Maxwell and B.J. Ainslie, “Demonstration of a directly written directional coupler using UV induced photosensitivity in a planar silica waveguide,” Electron. Lett. 31, 95–96 (1995).
[Crossref]

P.J. Lemaire, R.M. Atkins, V. Mizrahi, and W.A. Reed, “High Pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

D.Y. Stepanov, F. Ouellette, and G.R. Atkins, “Changes in the spatial distribution of UV-excited luminescence in Ge-doped fibre preforms during UV exposure,” Electron. Lett. 29, 1975–1977 (1993)
[Crossref]

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “Defects in optical fibres in regions of high stress gradients,” Electron. Lett. 27, 1432–1433 (1991).
[Crossref]

J. Light. Tech. (2)

M. Svalgaard, K. Faerch, and L.-U. Andersen, “Variable optical attenuator fabricated by direct UV writing,” J. Light. Tech. 21, 2097–2103 (2003).
[Crossref]

A. Iino, M. Kuwabara, and K. Kokura, “Mechanisms of hydrogen-induced losses in silica-based optical fibers,” J. Light. Tech. 8, 1675–1679 (1990).
[Crossref]

Opt. Comm. (1)

F. Ouellette, R.J. Campbell, D.L. Williams, and R. Kashyap, “Spatial distribution of UV-excited luminescence in Ge-doped fiber preforms,” Opt. Comm. 103, 85–88 (1993).
[Crossref]

Opt. Lett. (1)

Phot. Tech. Lett. (1)

G.R. Atkins, S.B. Poole, M.G. Sceats, H.W. Simmons, and C.E. Nockolds, “The influence of codopants and fabrication conditions on germanium defects in optical fiber preforms,” Phot. Tech. Lett. 4, 43–46 (1992).
[Crossref]

Phys. Rev. B (1)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[Crossref]

Phys. Stat. Sol. A (1)

L.N. Skuja, A.N. Trukhin, and A.E. Plaudis, “Luminescence in germanium-doped glassy SiO2,” Phys. Stat. Sol. A 84, K153–157 (1984).
[Crossref]

Other (2)

M. Svalgaard, A. Harpøth, and T. Rosbirk, “Luminescence microscopy of UV written waveguides,” Conference on Bragg Gratings, Poling And Photosensitivity, Optical Society of America, Technical Digest Series 151–153 (2003).

M. Svalgaard, “Dynamics of ultraviolet induced luminescence and fiber Bragg grating formation in the high fluence regime,” Conference on Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Technical Digest Series, Vol. 22of OSA Proceedings Series (Optical Society of America, Washington, D.C., 160–163 (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Luminescence microscopy imaging setup. A sample is illuminated with a UV beam producing luminescence which is imaged onto a CCD camera. A filter in the microscope can be used to discriminate between various luminescence bands.

Fig. 2.
Fig. 2.

Measured blue and red luminescence profiles and refractive index profile of a waveguide written with a beam power of 44 mW and a scan velocity of 110 µm/s. Each image measures 13×13 µm2.

Fig. 3.
Fig. 3.

Point-by-point correlation between blue luminescence intensity and refractive index in the waveguide core (same waveguide as shown in Fig. 2). Within the measurement accuracy, illustrated by error bars on a single datapoint, the data displays a linear corelation indicated by the red fitted line.

Fig. 4.
Fig. 4.

Calculated effective index versus the peak index change of a scaled luminescence profile (inset, 13×13 µm2). The scaled luminescence profile reproduces the measured effective index (dotted line) for a peak index change of 0.0128 which is in excellent agreement with the value of 0.0129 measured using the RNF technique.

Fig. 5.
Fig. 5.

Peak intensity of blue (circles) and red (squares) luminescence profile versus the characteristic expsoure time. The data has been corrected for the varying spectral response of the imaging setup. The blue luminescence profile is displayed for three selected waveguides. Each image is 7 µm wide.

Fig. 6.
Fig. 6.

Temporal development of the normalized blue luminescence profile, measured along a horisontal line in the core center. Before ‘turn-on’, at a characteristic exposure time of ~0.015 s, the profile is approximately Gaussian in shape and does not change in width. After turn-on the profile assumes a more rectangular shape and increases gradually in width.

Metrics