Abstract

Acousto-optically Q-switched operation of Tm (5 at. %), Ho(0.5 at. %):GdVO4 laser was reported in this paper. The Tm,Ho:GdVO4 crystal was cooled by liquid nitrogen and end-pumped by a 13.6 W fiber-coupled laser diode at 794 nm. Average power of 3.9W was obtained at pulse repetition frequency (PRF) from 10 to 50 kHz, with corresponding to optical-to-optical conversion efficiency of 29 %, and slope efficiency of 35%. The highest energy per pulse of 1.1 mJ in 23 ns was achieved at 3 kHz with peak power of 46 kW.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Targ, M. J . Kavaya, R. M. Huffaker, R. L. Bowles, �??Coherent lidar airborne windshear sensor: performance evaluation,�?? Appl. Opt. 30, 2013(1991).
    [CrossRef] [PubMed]
  2. G. Frehlich, �??Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling, �?? Appl. Opt. 28, 840 (1989).
    [CrossRef] [PubMed]
  3. T. Y. Fan, G. Huber, R. L. Byer, et al. �??Spectroscopy and diode laser pumped operation of Tm,Ho:YAG,�?? IEEE J. Quantum Electron. 24, 924-933(1988).
    [CrossRef]
  4. C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, "Diode-pumped high-efficiency Tm:YAG lasers," Opt. Express 4, 12-18 (1999). <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-1-12>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-1-12</a>.
    [CrossRef] [PubMed]
  5. B. T. McGuckin, R. T. Menzies, H. Hemmati, �??Efficient energy extraction from a diode pumped Q-switched Tm,Ho:YLF laser,�?? Appl. Phys. Lett. 59, 2926-2928(1991).
    [CrossRef]
  6. C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Yu.D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, �??Emission properties of Tm3+ :GdVO4 microchip laser at 1.9 μm,�?? Appl. Phys.B 67, 545- 548(1998).
    [CrossRef]
  7. P. J. Morris, W. Lüthy and H. P. Weber, �??Laser operation and spectroscopy of Tm,Ho:GdVO4,�?? Opt. Commun. 111, 493-496(1994).
    [CrossRef]
  8. B.Q. Yao, W.J. He, Y. Z. Wang, X. B. Zhang, Y. F. Li, �??High efficiency continuous-wave Tm : Ho : GdVO4 laser pumped by a diode,�?? Chin. Phys. Lett. 21, 2182-2183 (2004).
    [CrossRef]
  9. A. Sato, K. Asai, and K. Mizutani, �??Lasing characteristics and optimizations of a diode-side-pumped Tm, Ho:GdVO4 laser,�?? Opt. Lett. 29, 836-838(2004).
    [CrossRef] [PubMed]
  10. V. A. Mikhailov, Y. D. Zavartsev, A. I. Zagumennyi et al, �??Tm:GdVO4-A new efficient medium for diodepumped 2μm lasers,�?? Quantum Electron. 27, 13(1997).
    [CrossRef]
  11. C. P. Wyss, W. Lüthy, H. P. Weber, et al, �??Performance of a Tm3+:GdVO4 microchip laser at 1.9 μm,�?? Opt. Commun. 153, 63-68(1998).
    [CrossRef]
  12. D. Bruneau, S. Delmonte, and J. Pelon, �??Modeling of Tm,Ho:YAG and Tm,Ho:YLF 2-μm lasers and calculation of extractable energies,�?? App. Opt. 37, 8406-8419(1998).
    [CrossRef]
  13. P. A. Budni, M. G. Knights, E. P. Chicklis, H. P. Jenssen, �??Performance of a diode-pumped high PRF Tm, Ho:YLF laser,�?? IEEE J. Quantum Electron. 28, 1029-1031(1992).
    [CrossRef]

App. Opt. (1)

D. Bruneau, S. Delmonte, and J. Pelon, �??Modeling of Tm,Ho:YAG and Tm,Ho:YLF 2-μm lasers and calculation of extractable energies,�?? App. Opt. 37, 8406-8419(1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

B. T. McGuckin, R. T. Menzies, H. Hemmati, �??Efficient energy extraction from a diode pumped Q-switched Tm,Ho:YLF laser,�?? Appl. Phys. Lett. 59, 2926-2928(1991).
[CrossRef]

Appl. Phys.B (1)

C. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Yu.D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, �??Emission properties of Tm3+ :GdVO4 microchip laser at 1.9 μm,�?? Appl. Phys.B 67, 545- 548(1998).
[CrossRef]

Chin. Phys. Lett. (1)

B.Q. Yao, W.J. He, Y. Z. Wang, X. B. Zhang, Y. F. Li, �??High efficiency continuous-wave Tm : Ho : GdVO4 laser pumped by a diode,�?? Chin. Phys. Lett. 21, 2182-2183 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Y. Fan, G. Huber, R. L. Byer, et al. �??Spectroscopy and diode laser pumped operation of Tm,Ho:YAG,�?? IEEE J. Quantum Electron. 24, 924-933(1988).
[CrossRef]

P. A. Budni, M. G. Knights, E. P. Chicklis, H. P. Jenssen, �??Performance of a diode-pumped high PRF Tm, Ho:YLF laser,�?? IEEE J. Quantum Electron. 28, 1029-1031(1992).
[CrossRef]

Opt. Commun. (2)

C. P. Wyss, W. Lüthy, H. P. Weber, et al, �??Performance of a Tm3+:GdVO4 microchip laser at 1.9 μm,�?? Opt. Commun. 153, 63-68(1998).
[CrossRef]

P. J. Morris, W. Lüthy and H. P. Weber, �??Laser operation and spectroscopy of Tm,Ho:GdVO4,�?? Opt. Commun. 111, 493-496(1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Quantum Electron. (1)

V. A. Mikhailov, Y. D. Zavartsev, A. I. Zagumennyi et al, �??Tm:GdVO4-A new efficient medium for diodepumped 2μm lasers,�?? Quantum Electron. 27, 13(1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Room temperature transmission spectrum of an a-cut 2mm-long, AR-coated around 794 nm 5% Tm, 0.5% Ho:GdVO4 sample, measured with Shimadzu UV-3101PC scanning photometer. The calculated absorption coefficients are 21cm-1 at 799 nm and 13 cm-1 at 797.5 nm for π and σ polarizations. Thulium doped in GdVO4 host also exhibits >4 cm-1 absorption coefficient in the range from 792 to 794 nm.

Fig. 2.
Fig. 2.

Experimental setup of AO Q-switched Tm,Ho:GdVO4 laser

Fig. 3.
Fig. 3.

Output power of Tm, Ho:GdVO4 laser versus pumping power

Fig. 4.
Fig. 4.

Tm,Ho:GdVO4 output power and unpolarized absorption coefficient as a function of pump wavelengths

Fig. 5.
Fig. 5.

Pulse duration and energy per pulse of Tm,Ho:GdVO4 laser dependence on PRF.

Fig. 6.
Fig. 6.

(a) Pulse temporal profile of Q-switched Tm,Ho:GdVO4 laser with 10 kHz PRF; (b) Unstable pulses series overlapped with Q-switch RF off-time <120 ns; (c) Single laser pulse with 40 ns pulsewidth at 10 kHz repletion rates and RF voltage envelope with 2 µs off-time; (d) Pulse temporal profile with higher pulse amplitude and shorter pulsewidth compared to (c) when the RF off-time is tuned to about 200 ns.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = η a η q T T + L ν l ν p

Metrics