Abstract

We propose and evaluate several scene-based methods for computing nonuniformity corrections for visible or near-infrared pushbroom sensors. These methods can be used to compute new nonuniformity correction values or to repair or refine existing radiometric calibrations. For a given data set, the preferred method depends on the quality of the data, the type of scenes being imaged, and the existence and quality of a laboratory calibration. We demonstrate our methods with data from several different sensor systems and provide a generalized approach to be taken for any new data set.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. A. Scribner, K. A. Sarkay, J. T. Caldfield, M. R. Kruer, G. Katz, and C. J. Gridley, �??Nonuniformity correction for staring focal plane arrays using scene-based techniques,�?? in Infrared Detectors and Focal Plane Arrays, E. L. Dereniak and R. E. Sampson, eds., Proc. SPIE 1308, 224�??233 (1990).
  2. S. N. Torres, J. E. Pezoa, and M. M. Hayat, �??Scene-based nonuniformity correction for focal plane arrays by the method of the inverse covariance form,�?? Appl. Opt. 42, 5872�??5881 (2003).
    [CrossRef] [PubMed]
  3. B. M. Ratliff, M. M. Hayat, and J. S. Tyo, �??Radiometrically accurate scene-based nonuniformity correction for array sensors,�?? J. Opt. Soc. Am. A 20, 1890�??1899 (2003).
    [CrossRef]
  4. C. M. Stellman, F. M. Olchowski, G. G. Hazel, E. C. Allman, and M. L. Surratt, �??WAR HORSE and IRON HORSE at Camp Shelby - Data Collection and Associated Processing Results,�?? in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5093, 94�??103 (2003).
  5. C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, �??Ocean PHILLS hyperspectral imager: design, characterization, and calibration,�?? Opt. Express 10, 210�??221 (2002).
    [PubMed]
  6. R. A. Leathers, T. V. Downes, W. A. Snyder, J. H. Bowles, C. O. Davis, M. E. Kappus, M. A. Carney, W. Chen, D. Korwan, M. J. Montes, and W. J. Rhea, �??Ocean PHILLS Data Collection and Processing: May 2000 Deployment, Lee Stocking Island, Bahamas,�?? U. S. Naval Research Laboratory technical report NRL/FR/7212--02-10,010 (Available from the Defense Technical Information Center) (2002).
  7. J. N. Lee, M. R. Kruer, D. C. Linne von Berg, J. G. Howard, F. Olchowski, M. D. Duncan, E. J. Stone, R. A. Leathers, and T. V. Downes, �??Sensor Fusion for Long-Range Airborne Reconnaissance,�?? Photonic Applications, Systems and Technologies (PhAST) Conference, OSA, Baltimore, Maryland, 24-26 May 2005.
  8. H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, �??Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,�?? Limnol. Oceanogr. 48, 444�??455 (2003).
    [CrossRef]
  9. E. M. Louchard, R. P. Reid, C. F. Stephens, C. O. Davis, R. A. Leathers, T. V. Downes, and R. Maffione, �??Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments,�?? Opt. Express 10, 1573�??1584 (2002).
    [PubMed]

Appl. Opt.

J. Opt. Soc. Am. A

Limnol. Oceanogr.

H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, �??Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,�?? Limnol. Oceanogr. 48, 444�??455 (2003).
[CrossRef]

Opt. Express

PhAST

J. N. Lee, M. R. Kruer, D. C. Linne von Berg, J. G. Howard, F. Olchowski, M. D. Duncan, E. J. Stone, R. A. Leathers, and T. V. Downes, �??Sensor Fusion for Long-Range Airborne Reconnaissance,�?? Photonic Applications, Systems and Technologies (PhAST) Conference, OSA, Baltimore, Maryland, 24-26 May 2005.

Proc. SPIE

D. A. Scribner, K. A. Sarkay, J. T. Caldfield, M. R. Kruer, G. Katz, and C. J. Gridley, �??Nonuniformity correction for staring focal plane arrays using scene-based techniques,�?? in Infrared Detectors and Focal Plane Arrays, E. L. Dereniak and R. E. Sampson, eds., Proc. SPIE 1308, 224�??233 (1990).

C. M. Stellman, F. M. Olchowski, G. G. Hazel, E. C. Allman, and M. L. Surratt, �??WAR HORSE and IRON HORSE at Camp Shelby - Data Collection and Associated Processing Results,�?? in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, S. S. Shen and P. E. Lewis, eds., Proc. SPIE 5093, 94�??103 (2003).

Other

R. A. Leathers, T. V. Downes, W. A. Snyder, J. H. Bowles, C. O. Davis, M. E. Kappus, M. A. Carney, W. Chen, D. Korwan, M. J. Montes, and W. J. Rhea, �??Ocean PHILLS Data Collection and Processing: May 2000 Deployment, Lee Stocking Island, Bahamas,�?? U. S. Naval Research Laboratory technical report NRL/FR/7212--02-10,010 (Available from the Defense Technical Information Center) (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Mean-spectrum NUC (A) and median-ratio NUC (B) methods.

Fig. 2.
Fig. 2.

Example WAR HORSE laboratory calibration before (A) and after (B) the application of a low-pass filter and the high-pass version of the calibration (C) obtained by dividing (A) by (B). Shown are spectral channels 9, 10, and 47.

Fig. 3.
Fig. 3.

Laboratory (black) and updated (red) calibration for band 9 of the Ocean PHILLS.

Fig. 4.
Fig. 4.

Fig. 4. Example Ocean PHILLS image with laboratory calibration (left) and median-ratio computed calibration (right).

Fig. 5.
Fig. 5.

Example repair of the radiometric calibration for the WAR HORSE sensor. Part A shows a region of the calibration for band 32 before and after repair. Parts B and C show ‘before’ and ‘after’ images (200 samples wide; RGB=bands 32, 24, and 10) in the region of the image near the repair.

Fig. 6.
Fig. 6.

Dalsa image before (left) and after (right) a mean-spectrum NUC.

Fig. 8.
Fig. 8.

Dalsa subimage (97 samples wide) before and after a median-spectrum NUC.

Fig. 7.
Fig. 7.

Example Diamond 1 image corrected with an in-scene mean-spectrum NUC (left) and the same image corrected with an in-scene median-ratio NUC.

Fig. 8.
Fig. 8.

Example sets of sorted ratio values (at band 21, sample 201) for four consecutive D1 images. The ratio values become more and more homogeneous as more data is processed, causing the median value to converge.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

L s , b = c s , b x s , b ,
L = c 1 x + c 2 x 2 + ;
L s , b = c b ν s , b x s , b ,
L ̅ s L ̅ ,
ν s = x ̅ x ̅ s .
median l ( L s + 1 L s ) 1 .
ν s , b = i = 0 s r ˜ i , b .
ν s + 1 , b = ν s , b r ˜ s , b and ν s , b = ν s + 1 , b r ˜ s , b .
ν = ν sm ν dt ,
c = c sm ν dt .
c = ( ν dt ) in flight ( c sm ) lab .
c = ν in flight ( ν in flight c lab ) sm .
ν = ν median ratio ( ν median ratio ν mean spec ) sm .
ν s , b = median l ( x s , b , l x ref , b , l ) .
( 1 ν dt ) 2 > d ,

Metrics