Abstract

We present a way to improve the dispersion tolerance of an electrical-binary-signal-based duobinary transmitter, implemented by using a dual-arm Mach-Zehnder modulator driven with two complementary binary signals. Successful transmission over 200 km of single-mode fiber is achieved by optimizing the relative time delay between the binary signals and the driving voltage.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Kim, C. X. Yu, and D. T. Neilson, �??Demonstration of optical duobinary transmission system using phase modulator and optical filter,�?? IEEE Photon. Technol. Lett. IEEE Photon. Technol. Lett. 14, 1010-1012, (2002).
    [CrossRef]
  2. T. Franck, P.B. Hansen, T.N. Nielsen, and L. Eskildsen, �??Novel duobinary transmitter,�?? in Proceedings of the European Conference on Optics and Communications, (1997), pp. 67-70
  3. P. J. Winzer and S. Chandrasekhar, �??Return-to-zero modulation with electrically continuously tunable duty cycle using single NRZ modulator,�?? Electron. Lett. 39, 859-860, (2003).
    [CrossRef]
  4. J. Yu, �??Generation of modified duobinary RZ signals by using one single dual-arm LiNbO3 modulator,�?? IEEE Photon. Technol. Lett. 15, 1455-1457, (2003).
    [CrossRef]
  5. A. Djupsjöbacka, �??Prechirped Duobinary Modulation,�?? IEEE Photon. Technol. Lett. 10, 1159-1161, (1998).
    [CrossRef]
  6. D. Penninckx, �??Enhanced-phase-shaped binary transmission,�?? Electron. Lett. 36, 478-480, (2000).
    [CrossRef]
  7. H. Kim and C. X. Yu, �??Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,�?? IEEE Photon. Technol. Lett. 14, 1205-1207, (2002).
    [CrossRef]
  8. J.M. Gené, R. Nieves, A. Buxens, C. Peucheret, J. Prat, and P. Jeppesen, �??Reduced driving voltage optical duobinary transmitter and its impact on transmission performance over standard single-mode fiber,�?? IEEE Photon. Technol. Lett. 14, 843-845, (2002).
    [CrossRef]
  9. W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, �??Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance,�?? IEEE Photon. Technol. Lett., 13, 884-886, (2001).
    [CrossRef]
  10. H. Kim, G. Lee, H. Lee, S. K. Kim, I. Kang, S. Hwang, and Y. Oh, �??On the use of 2.5-Gb/s Mach-Zehnder modulators to generate 10-Gb/s optical duobinary signals,�?? IEEE Photon. Technol. Lett., 16, 2577-2579, (2004).
    [CrossRef]

EEE Photon. Technol. Lett. (1)

J.M. Gené, R. Nieves, A. Buxens, C. Peucheret, J. Prat, and P. Jeppesen, �??Reduced driving voltage optical duobinary transmitter and its impact on transmission performance over standard single-mode fiber,�?? IEEE Photon. Technol. Lett. 14, 843-845, (2002).
[CrossRef]

Electron. Lett. (2)

D. Penninckx, �??Enhanced-phase-shaped binary transmission,�?? Electron. Lett. 36, 478-480, (2000).
[CrossRef]

P. J. Winzer and S. Chandrasekhar, �??Return-to-zero modulation with electrically continuously tunable duty cycle using single NRZ modulator,�?? Electron. Lett. 39, 859-860, (2003).
[CrossRef]

European Conf. on Optics & Comm. 1997 (1)

T. Franck, P.B. Hansen, T.N. Nielsen, and L. Eskildsen, �??Novel duobinary transmitter,�?? in Proceedings of the European Conference on Optics and Communications, (1997), pp. 67-70

IEEE Photon. Technol. Lett. (4)

H. Kim, C. X. Yu, and D. T. Neilson, �??Demonstration of optical duobinary transmission system using phase modulator and optical filter,�?? IEEE Photon. Technol. Lett. IEEE Photon. Technol. Lett. 14, 1010-1012, (2002).
[CrossRef]

H. Kim and C. X. Yu, �??Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth,�?? IEEE Photon. Technol. Lett. 14, 1205-1207, (2002).
[CrossRef]

W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, �??Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance,�?? IEEE Photon. Technol. Lett., 13, 884-886, (2001).
[CrossRef]

H. Kim, G. Lee, H. Lee, S. K. Kim, I. Kang, S. Hwang, and Y. Oh, �??On the use of 2.5-Gb/s Mach-Zehnder modulators to generate 10-Gb/s optical duobinary signals,�?? IEEE Photon. Technol. Lett., 16, 2577-2579, (2004).
[CrossRef]

Photon. Technol. Lett. (1)

J. Yu, �??Generation of modified duobinary RZ signals by using one single dual-arm LiNbO3 modulator,�?? IEEE Photon. Technol. Lett. 15, 1455-1457, (2003).
[CrossRef]

Technol. Lett. (1)

A. Djupsjöbacka, �??Prechirped Duobinary Modulation,�?? IEEE Photon. Technol. Lett. 10, 1159-1161, (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the duobinary transmitter and in/out signals of 0.5-bit delay duobinary (MZM: MZ modulator) (a) schematic diagram of the duobinary transmitter, (b) 0.5-bit delay electrical signal and the inverted electrical signal, (c) 0.5-bit delay duobinary signal.

Fig. 2.
Fig. 2.

Polar diagrams and optical eye diagrams at back-to-back transmission (a) and (b) 1-bit delay and 100% driving voltage, (c) and (d) 0.5-bit delay and 100% driving voltage, (e) and (f) 0.5-bit delay and 25% driving voltage.

Fig. 3.
Fig. 3.

Measured receiver sensitivities as a function of the relative time delay of 100% driving voltage.

Fig. 4.
Fig. 4.

Measured receiver sensitivities as a function of the driving voltage of 0.5-bit delay electrical signal (left), transmitter insertion loss as a function of the driving voltage of 0.5-bit delay electrical signal (right).

Fig. 5.
Fig. 5.

Measured receiver sensitivities as a function of a transmission distance.

Metrics