Abstract

ZnO/Mg0.16Zn0.84O (ZnO/MgZnO) films are fabricated on x-cut and z-cut LiNbO3 (LN) substrates by radio-frequency magnetron sputtering. High transparencies are confirmed by a spectrophotometer. X-ray diffraction (XRD) spectra show that all the films are c-axis oriented. The waveguiding properties, as well as the refractive indices and thickness of the films are demonstrated and determined by prism coupling. Both transverse electric (TE) and transverse magnetic (TM) modes are measured at λ=0.633 µm and 1.539 µm, respectively. The waveguide loss is measured at λ=0.633 µm with a fiber probe technique. The experimental results show that high optical quality ZnO films can be obtained with MgZnO buffer layers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. F. Chen, D. M. Bagnall, H. Ko. K. Park, K. Hiraga, Z. Zhu, and T. Yao, �??Plasma assited molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,�?? J. Appl. Phys. 84, 3912-3918 (1998).
    [CrossRef]
  2. R.Ondo-Ndong, F. Pascal-Delannoy, A. Boyer, A. Giani, and A. Foucaran, �??Structural properties of zinc oxide thin films prepared by r. f. magnetron sputtering,�?? Mat. Sci. Eng. B 97, 68-73 (2003).
    [CrossRef]
  3. K. Matsubara, P. Fons, A. Yamada, M. Watanabe, and S. Niki, �??Epitaxial growth of ZnO thin films on LiNbO3 substrates,�?? Thin Solid Films 347, 238-240 (1998).
    [CrossRef]
  4. H. Kato, K. Miyamoto, M. Sano, and T. Yao, �??Polarity control of Zno sapphire by the MgO buffer layer thickness,�?? Appl. Phys. Lett. 84, 4562-4564 (2004).
    [CrossRef]
  5. W. S. Hu, Z. G. Liu, X. L. Guo, C. Lin, S. N. Zhu, and D. Feng, �??Preparation of c-axis oriented ZnO optical waveguiding films on fused silica by pulsed laser reactive ablation,�?? Mater. Lett. 25, 5-8 (1995).
    [CrossRef]
  6. N. Mails, J. P. Reithmaier, A. Forchel, M. Kohls, L. Spanhel, and G. Müller, �??Er doped nanocrystalline ZnO planar waveguide structures for 1.55μm amplifier applications,�?? Appl. Phys. Lett. 75, 2005-2007 (1999).
    [CrossRef]
  7. S. F. Yu, C. Yuen, S. P. Lau, Y. G. Wang, H. W. Lee, and B. K. Tay, �??Ultraviolet amplified spontaneous emission from zinc oxide ridge waveguides,�?? Appl. Phys. Lett. 83, 4288-4290 (2003).
    [CrossRef]
  8. N. Mehan, V. Gupta, K. Sreenivas, and A. Mansingh, �??Effect of annealing on refractive indices of radio-frequency magnetron sputtered waveguiding zinc oxide films on glass,�?? J. Appl. Phys. 96, 3134-3139 (2004).
    [CrossRef]
  9. R. D. Shannon, �??Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,�?? Acta Crystallogr. A 32, 751-767 (1976).
    [CrossRef]
  10. C. W. Teng, J. F. Muth, �?. �?zgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, �??Refractive indices and absorption coefficients of MgxZn1-xO alloys,�?? Appl. Phys. Lett. 76, 979-981 (1999).
    [CrossRef]
  11. F. Reizman, �??Optical Thickness Measurement of Thin Transparent Films on Silicon,�?? J. Appl. Phys. 36, 3804-3807 (1965).
    [CrossRef]
  12. H. Yamamoto, N. Saiga and K. Nishimori, �??ZnO thin films deposited on various LiNbO3 substrates by RF-sputtering,�?? Appl. Surf. Sci. 169-170, 517 -520 (2001).
    [CrossRef]
  13. L.V. Azaroff, Elements of X-ray Crystallography (McGraw-Hill, New York, 1968).
  14. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, UK, 1994).
    [CrossRef]
  15. A. Ghatak, and K. Thyagarajan, Integrated Optics in Optical Electronics (Cambridge University Press, New Delhi, 1994).
  16. V. Gupta and A. Mansingh, �??Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film,�?? J. Appl. Phys. 80, 1063-1073 (1996).
    [CrossRef]
  17. A. Dietrich, K. Schmalzbauer, and H. Hoffman, �??The effect of annealing on the optical properties of indium tin oxide films,�?? Thin Solid Films 122, 19-29 (1984).
    [CrossRef]

Acta Crystallogr. A

R. D. Shannon, �??Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,�?? Acta Crystallogr. A 32, 751-767 (1976).
[CrossRef]

Appl. Phys. Lett.

C. W. Teng, J. F. Muth, �?. �?zgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, �??Refractive indices and absorption coefficients of MgxZn1-xO alloys,�?? Appl. Phys. Lett. 76, 979-981 (1999).
[CrossRef]

N. Mails, J. P. Reithmaier, A. Forchel, M. Kohls, L. Spanhel, and G. Müller, �??Er doped nanocrystalline ZnO planar waveguide structures for 1.55μm amplifier applications,�?? Appl. Phys. Lett. 75, 2005-2007 (1999).
[CrossRef]

S. F. Yu, C. Yuen, S. P. Lau, Y. G. Wang, H. W. Lee, and B. K. Tay, �??Ultraviolet amplified spontaneous emission from zinc oxide ridge waveguides,�?? Appl. Phys. Lett. 83, 4288-4290 (2003).
[CrossRef]

H. Kato, K. Miyamoto, M. Sano, and T. Yao, �??Polarity control of Zno sapphire by the MgO buffer layer thickness,�?? Appl. Phys. Lett. 84, 4562-4564 (2004).
[CrossRef]

Appl. Surf. Sci.

H. Yamamoto, N. Saiga and K. Nishimori, �??ZnO thin films deposited on various LiNbO3 substrates by RF-sputtering,�?? Appl. Surf. Sci. 169-170, 517 -520 (2001).
[CrossRef]

J. Appl. Phys.

V. Gupta and A. Mansingh, �??Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film,�?? J. Appl. Phys. 80, 1063-1073 (1996).
[CrossRef]

Y. F. Chen, D. M. Bagnall, H. Ko. K. Park, K. Hiraga, Z. Zhu, and T. Yao, �??Plasma assited molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization,�?? J. Appl. Phys. 84, 3912-3918 (1998).
[CrossRef]

N. Mehan, V. Gupta, K. Sreenivas, and A. Mansingh, �??Effect of annealing on refractive indices of radio-frequency magnetron sputtered waveguiding zinc oxide films on glass,�?? J. Appl. Phys. 96, 3134-3139 (2004).
[CrossRef]

F. Reizman, �??Optical Thickness Measurement of Thin Transparent Films on Silicon,�?? J. Appl. Phys. 36, 3804-3807 (1965).
[CrossRef]

Mat. Sci. Eng. B

R.Ondo-Ndong, F. Pascal-Delannoy, A. Boyer, A. Giani, and A. Foucaran, �??Structural properties of zinc oxide thin films prepared by r. f. magnetron sputtering,�?? Mat. Sci. Eng. B 97, 68-73 (2003).
[CrossRef]

Mater. Lett.

W. S. Hu, Z. G. Liu, X. L. Guo, C. Lin, S. N. Zhu, and D. Feng, �??Preparation of c-axis oriented ZnO optical waveguiding films on fused silica by pulsed laser reactive ablation,�?? Mater. Lett. 25, 5-8 (1995).
[CrossRef]

Thin Solid Films

K. Matsubara, P. Fons, A. Yamada, M. Watanabe, and S. Niki, �??Epitaxial growth of ZnO thin films on LiNbO3 substrates,�?? Thin Solid Films 347, 238-240 (1998).
[CrossRef]

A. Dietrich, K. Schmalzbauer, and H. Hoffman, �??The effect of annealing on the optical properties of indium tin oxide films,�?? Thin Solid Films 122, 19-29 (1984).
[CrossRef]

Other

L.V. Azaroff, Elements of X-ray Crystallography (McGraw-Hill, New York, 1968).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, UK, 1994).
[CrossRef]

A. Ghatak, and K. Thyagarajan, Integrated Optics in Optical Electronics (Cambridge University Press, New Delhi, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical transmittance diagram of ZnO film (solid line) and Mg0.16Zn0.84O film (dotted line) grown on z-cut LiNbO3 substrates by radio-frequency magnetron sputtering under a pressure of 1.0 Pa at 200 W RF-power at 350 K.

Fig. 2.
Fig. 2.

X-ray diffraction patterns of ZnO/MgZnO films deposited on (a) x-cut LN and (b) z-cut LN. The inlet figures exhibit the x-ray diffraction patterns of MgZnO films.

Fig. 3.
Fig. 3.

Mode plots vs. effective refractive indices at λ=1.539µm for annealed films S1 with (a) TE polarization, (b)TM polarization; and for annealed film S2 with (c) TE polarization, (d) TM polarization, respectively.

Fig. 4.
Fig. 4.

Loss measurements of annealed films (a) S1 and (b) S2 at λ=0.633µm with the excited TM0 modes.

Tables (1)

Tables Icon

Table 1. Experimental values for samples S1 and S2, all the data are measured at 1.539µm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d = 0.9 λ B cos θ B
k z d = m π + tan 1 [ n m 2 n 0 2 n 1 2 n m 2 ] 1 2 + tan 1 [ n m 2 n 2 2 n 1 2 n m 2 ] 1 2
k z d = m π + tan 1 [ n 1 2 n 0 2 ] [ n m 2 n 0 2 n 1 2 n m 2 ] 1 2 + tan 1 [ n 1 2 n 2 2 ] [ n m 2 n 2 2 n 1 2 n m 2 ] 1 2
k z = k ( n 1 2 n m 2 ) 1 2
n m = n 1 sin θ m = n p sin θ m

Metrics