Abstract

We report an actively Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating. The laser employs a pair of Bragg gratings as reflective mirrors, one of which is bonded to a magnetostrictive element. Lengthening of the magnetostrictive element when a magnetic field is applied shifts the Bragg wavelength of the grating, allowing control of the Q-factor of the cavity and, thus, performing active Q-switching. The magnetostrictive modulator is small, compact and requires less than 300 mW electrical drive power. Using erbium-doped fiber and a maximum pump power of 120 mW, Q-switch pulses of more than 1 W peak power were obtained, with a pulse repetition rate that can be continuously varied from 1 Hz to 125 kHz.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
    [CrossRef]
  2. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarckson, S. Girard, and R. Moncorgé, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27, 1980–1982 (2002).
    [CrossRef]
  3. V. N. Philippov, A. V. Kiryanov, and S. Unger, “Advanced configuration of erbium fiber passively Q-switched laser with Co2+:ZnSe crystal as saturable absorber,” IEEE Photon. Technol. Lett. 16, 57–59 (2004).
    [CrossRef]
  4. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 µm,” Opt. Lett. 24, 388–390 (1999).
    [CrossRef]
  5. L. Luo and P.L. Chu, “Passive Q-switched erbium-doped fibre laser with saturable absorber,” Opt. Commun. 161, 257–263 (1999).
    [CrossRef]
  6. H. H. Kee, G. P. Lees, and T. P. Newson, “Narrow linewidth CW and Q-switched erbium-doped fibre loop laser,” Electron. Lett. 34, 1318–1319 (1998).
    [CrossRef]
  7. J. A. Álvarez-Chávez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A Clarckson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37–39 (2000).
    [CrossRef]
  8. A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32, 2031–2035 (1993).
    [CrossRef]
  9. D. W. Huang, W. F. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12, 1153–1155 (2000).
    [CrossRef]
  10. N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Comm. 210, 361–366 (2002).
    [CrossRef]
  11. J.L. Cruz, A. Díez, M.V. Andrés, A. Segura, B. Ortega y, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
    [CrossRef]
  12. P. Myslinski, J. Chrostowski, J. A. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286–290 (1993).
    [CrossRef] [PubMed]

2004 (1)

V. N. Philippov, A. V. Kiryanov, and S. Unger, “Advanced configuration of erbium fiber passively Q-switched laser with Co2+:ZnSe crystal as saturable absorber,” IEEE Photon. Technol. Lett. 16, 57–59 (2004).
[CrossRef]

2002 (2)

M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarckson, S. Girard, and R. Moncorgé, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27, 1980–1982 (2002).
[CrossRef]

N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Comm. 210, 361–366 (2002).
[CrossRef]

2000 (2)

D. W. Huang, W. F. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12, 1153–1155 (2000).
[CrossRef]

J. A. Álvarez-Chávez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A Clarckson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37–39 (2000).
[CrossRef]

1999 (2)

1998 (1)

H. H. Kee, G. P. Lees, and T. P. Newson, “Narrow linewidth CW and Q-switched erbium-doped fibre loop laser,” Electron. Lett. 34, 1318–1319 (1998).
[CrossRef]

1997 (1)

J.L. Cruz, A. Díez, M.V. Andrés, A. Segura, B. Ortega y, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

1993 (3)

P. Myslinski, J. Chrostowski, J. A. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286–290 (1993).
[CrossRef] [PubMed]

A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32, 2031–2035 (1993).
[CrossRef]

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Álvarez-Chávez, J. A.

Andrés, M. V.

N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Comm. 210, 361–366 (2002).
[CrossRef]

Andrés, M.V.

J.L. Cruz, A. Díez, M.V. Andrés, A. Segura, B. Ortega y, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Atkins, R. M.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Chandonnet, A.

A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32, 2031–2035 (1993).
[CrossRef]

Chardon, A. M.

Chrostowski, J.

Chu, P.L.

L. Luo and P.L. Chu, “Passive Q-switched erbium-doped fibre laser with saturable absorber,” Opt. Commun. 161, 257–263 (1999).
[CrossRef]

Clarckson, W. A

Clarckson, W. A.

Cruz, J. L.

N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Comm. 210, 361–366 (2002).
[CrossRef]

Cruz, J.L.

J.L. Cruz, A. Díez, M.V. Andrés, A. Segura, B. Ortega y, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Delavaux, M. P.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Díez, A.

J.L. Cruz, A. Díez, M.V. Andrés, A. Segura, B. Ortega y, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

DiGiovanni, D. J.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Dong, L.

J.L. Cruz, A. Díez, M.V. Andrés, A. Segura, B. Ortega y, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Duchowicz, R.

N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Comm. 210, 361–366 (2002).
[CrossRef]

Gini, E.

Girard, S.

Grubb, S. G.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Häring, R.

Huang, D. W.

D. W. Huang, W. F. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12, 1153–1155 (2000).
[CrossRef]

Kee, H. H.

H. H. Kee, G. P. Lees, and T. P. Newson, “Narrow linewidth CW and Q-switched erbium-doped fibre loop laser,” Electron. Lett. 34, 1318–1319 (1998).
[CrossRef]

Keller, U.

Kiryanov, A. V.

V. N. Philippov, A. V. Kiryanov, and S. Unger, “Advanced configuration of erbium fiber passively Q-switched laser with Co2+:ZnSe crystal as saturable absorber,” IEEE Photon. Technol. Lett. 16, 57–59 (2004).
[CrossRef]

Koningstein, J. A.

Laroche, M.

Larose, G.

A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32, 2031–2035 (1993).
[CrossRef]

Lees, G. P.

H. H. Kee, G. P. Lees, and T. P. Newson, “Narrow linewidth CW and Q-switched erbium-doped fibre loop laser,” Electron. Lett. 34, 1318–1319 (1998).
[CrossRef]

Liu, W. F.

D. W. Huang, W. F. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12, 1153–1155 (2000).
[CrossRef]

Luo, L.

L. Luo and P.L. Chu, “Passive Q-switched erbium-doped fibre laser with saturable absorber,” Opt. Commun. 161, 257–263 (1999).
[CrossRef]

Melchior, H.

Mizrahi, V.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Moncorgé, R.

Mora, J.

N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Comm. 210, 361–366 (2002).
[CrossRef]

Myslinski, P.

Newson, T. P.

H. H. Kee, G. P. Lees, and T. P. Newson, “Narrow linewidth CW and Q-switched erbium-doped fibre loop laser,” Electron. Lett. 34, 1318–1319 (1998).
[CrossRef]

Nilsson, J.

Offerhaus, H. L.

Ortega y, B.

J.L. Cruz, A. Díez, M.V. Andrés, A. Segura, B. Ortega y, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Park, Y. K.

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Paschotta, R.

Philippov, V. N.

V. N. Philippov, A. V. Kiryanov, and S. Unger, “Advanced configuration of erbium fiber passively Q-switched laser with Co2+:ZnSe crystal as saturable absorber,” IEEE Photon. Technol. Lett. 16, 57–59 (2004).
[CrossRef]

Richardson, D. J.

Russo, N. A.

N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Comm. 210, 361–366 (2002).
[CrossRef]

Segura, A.

J.L. Cruz, A. Díez, M.V. Andrés, A. Segura, B. Ortega y, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

Shepherd, D. P.

Simpson, J. R.

Turner, P. W.

Unger, S.

V. N. Philippov, A. V. Kiryanov, and S. Unger, “Advanced configuration of erbium fiber passively Q-switched laser with Co2+:ZnSe crystal as saturable absorber,” IEEE Photon. Technol. Lett. 16, 57–59 (2004).
[CrossRef]

Yang, C. C.

D. W. Huang, W. F. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12, 1153–1155 (2000).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

J.L. Cruz, A. Díez, M.V. Andrés, A. Segura, B. Ortega y, and L. Dong, “Fibre Bragg gratings tuned and chirped using magnetic fields,” Electron. Lett. 33, 235–236 (1997).
[CrossRef]

H. H. Kee, G. P. Lees, and T. P. Newson, “Narrow linewidth CW and Q-switched erbium-doped fibre loop laser,” Electron. Lett. 34, 1318–1319 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

V. N. Philippov, A. V. Kiryanov, and S. Unger, “Advanced configuration of erbium fiber passively Q-switched laser with Co2+:ZnSe crystal as saturable absorber,” IEEE Photon. Technol. Lett. 16, 57–59 (2004).
[CrossRef]

D. W. Huang, W. F. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12, 1153–1155 (2000).
[CrossRef]

J. Lightwave Technol. (1)

V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park, and M. P. Delavaux, “Stable single-mode erbium fiber-grating laser for digital communication,” J. Lightwave Technol. 11, 2021–2025 (1993).
[CrossRef]

Opt. Comm. (1)

N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz, and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Comm. 210, 361–366 (2002).
[CrossRef]

Opt. Commun. (1)

L. Luo and P.L. Chu, “Passive Q-switched erbium-doped fibre laser with saturable absorber,” Opt. Commun. 161, 257–263 (1999).
[CrossRef]

Opt. Eng. (1)

A. Chandonnet and G. Larose, “High-power Q-switched erbium fiber laser using an all-fiber intensity modulator,” Opt. Eng. 32, 2031–2035 (1993).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Q-switched all-fiber laser arrangement. MM: magnetostrictive modulator, MT: magnetostrictive transducer.

Fig. 2.
Fig. 2.

(left) Time response of the magnetostrictive modulator when the current is switched on (a) and switched off (b). (right) Q-switch laser pulse emitted when the reflection band of the FBGs overlap as the current is switched on (c) and switched off (d). The current applied to the coil is also plotted in all cases (dashed line).

Fig 3.
Fig 3.

(a) Pulse shape for a 15 mW pump power and 1 kHz pulse repetition rate. (b) Laser output when operating at 125 kHz (solid line) and current applied to the magnetic coil (dashed line).

Fig 4.
Fig 4.

(a) Optical peak power versus continuous pump power for several pulse repetition frequencies. (b) Pulse width against pulse repetition frequency when pumping at 76 mW.

Metrics