Abstract

This report about backscattering measurements of the speckle produced by strongly-scattering liquid media shows that the size of the backscattered speckle depends on scattering and anisotropy coefficients. These measurements were aimed at assessing the effects of polarization characteristics of the incident laser beam and of the scattered light on speckle size. The samples under study consisted of monodisperse polystyrene microspheres in solutions, mixtures of different sized-microspheres, milk, blood and pig skin. Such measurements of speckle size in polarization give information on strongly scattering media, allow their discrimination and enable one to characterize the undergone changes.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Ishii, T. Iwai, S.Wada, and M. Miyakoshi, �??Simultaneous viscometry and particle sizing on the basis of dynamic light scattering,�?? Proc. SPIE 4263, 112-121 (2001).
    [CrossRef]
  2. D. A. Boas and A. G. Yodh, �??Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,�?? J. Opt. Soc. Am. A 14, 192-215 (1997).
    [CrossRef]
  3. J. D. Briers, G. Richards and X.W. He, �??Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),�?? J. Biomed. Opt. 4, 164-175 (1999).
    [CrossRef]
  4. D.A. Zimnyakov, J.D. Briers, V.V. Tuchin, �??Speckle technologies for monitoring and imaging of tissues and tissuelike phantoms,�?? Chap.18 in Handbook of biomedical diagnostics, Valery V. Tuchin, Ed. (SPIE press, Bellingham 2002).
  5. V.V. Tuchin, �??Laser light scattering in biomedical diagnostics and therapy,�?? J. Las. Appl. 5, No.2&3, 43-60 (1993).
  6. Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, J. Lotrian, �??Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering,�?? Opt. Express 12, 176-188 (2004), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-176�??>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-176</a>.
    [CrossRef] [PubMed]
  7. P. Elies, B. Le Jeune, F. Le Roy Brehonnet , J. Cariou, and J. Lotrian, �?? Experimental investigation of the speckle polarization for a polished aluminium sample,�?? J. Phys. D. 30, 29-39 (1997).
    [CrossRef]
  8. J. Li, G. Yao, L.V. Wang, �??Degree of polarization in laser speckles from turbid media: implications in tissue optics,�?? J. Biomed. Opt. 7, 307-312 (2002).
    [CrossRef] [PubMed]
  9. D.A. Zimnyakov, V.V. Tuchin, K.V. Larin, A.A. Mishin, �??Speckle patterns polarization analysis as an approach to turbid tissues structure monitoring,�?? Proc. SPIE 2981, 172-180 (1997).
    [CrossRef]
  10. J.W. Goodman, �??Statistical Properties of Laser Speckle Patterns,�?? in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, Berlin, Heidelberg New York Tokyo, 1984).
  11. Terri L. Alexander, James E. Harvey, and Arthur R. Weeks, �??Average speckle size as a function of intensity threshold level: comparison of experimental measurements with theory,�?? Appl. Opt. 33, 8240-8250 (1994).
    [CrossRef] [PubMed]
  12. Q.B. Li and F.P. Chiang , �??Three-dimensional of laser speckle,�?? Appl. Opt. 31, 6287-6291 (1992).
    [CrossRef] [PubMed]
  13. N.L. Swanson, B.D. Billard, and T.L. Gennaro, �??Limits of optical transmission measurements with application to particle sizing techniques,�?? Appl. Opt. 38, 5887-5893 (1999).
    [CrossRef]
  14. N. Ghosh, H.S. Patel, P.K. Gupta, �??Depolarization of light in tissue phantoms effect of a distribution in the size of scatterers,�?? Opt. Express 11, 2198-2205 (2003), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2198�??> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2198</a>.
    [CrossRef] [PubMed]
  15. S.P. Morgan and M.E. Ridgway, �??Polarization properties of light backscattered from a two layer scattering medium,�?? Opt. Express 7, 395-402 (2000), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-395�??> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-395</a>.
    [CrossRef] [PubMed]
  16. F. Boulvert, B. Boulbry, G. Le Brun, B. Le Jeune, S. Rivet, and J. Cariou, �??Analysis of the depolarizing properties of irradiated pig skin,�?? J. Opt. A: Pure Appl. Opt 7, 21-28 (2005).
    [CrossRef]
  17. S. L. Jacques, J. C. Ramella-Roman, K. Lee, �??Imaging skin pathology with polarized light,�?? J. Biomed. Opt. 7, 1-12 (2002).
    [CrossRef]
  18. F.C. Mackintosh, J.X. Zhu, D.J. Pine, D.A. Weitz, �??Polarization memory of multiply scattered light,�?? Phys. Rev. B 40, 9342- 9345 (1989).
    [CrossRef]
  19. D.A. Zimnyakov, V.V. Tuchin, and A.A. Mishin, �??Spatial speckle correlometry in applications to speckle structure monitoring,�?? Appl. Opt. 36, 5594-5607 (1997).
    [CrossRef] [PubMed]
  20. A.H. Hielscher, J. R. Mourant, and I. J. Bigio, �??Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,�?? Appl. Opt. 36, 125-135 (1997).
    [CrossRef] [PubMed]
  21. S-P Lin, L. Wang, S. L. Jacques, and F. K. Tittel, �??Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,�?? Appl. Opt. 36, 136-143 (1997).
    [CrossRef] [PubMed]

Appl. Opt. (6)

Hndbk of biomedical diagnostics, Chap 18 (1)

D.A. Zimnyakov, J.D. Briers, V.V. Tuchin, �??Speckle technologies for monitoring and imaging of tissues and tissuelike phantoms,�?? Chap.18 in Handbook of biomedical diagnostics, Valery V. Tuchin, Ed. (SPIE press, Bellingham 2002).

J. Biomed. Opt. (3)

J. Li, G. Yao, L.V. Wang, �??Degree of polarization in laser speckles from turbid media: implications in tissue optics,�?? J. Biomed. Opt. 7, 307-312 (2002).
[CrossRef] [PubMed]

J. D. Briers, G. Richards and X.W. He, �??Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),�?? J. Biomed. Opt. 4, 164-175 (1999).
[CrossRef]

S. L. Jacques, J. C. Ramella-Roman, K. Lee, �??Imaging skin pathology with polarized light,�?? J. Biomed. Opt. 7, 1-12 (2002).
[CrossRef]

J. Las. Appl. (1)

V.V. Tuchin, �??Laser light scattering in biomedical diagnostics and therapy,�?? J. Las. Appl. 5, No.2&3, 43-60 (1993).

J. Opt. A: Pure Appl. Opt (1)

F. Boulvert, B. Boulbry, G. Le Brun, B. Le Jeune, S. Rivet, and J. Cariou, �??Analysis of the depolarizing properties of irradiated pig skin,�?? J. Opt. A: Pure Appl. Opt 7, 21-28 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

P. Elies, B. Le Jeune, F. Le Roy Brehonnet , J. Cariou, and J. Lotrian, �?? Experimental investigation of the speckle polarization for a polished aluminium sample,�?? J. Phys. D. 30, 29-39 (1997).
[CrossRef]

Laser speckle and related phenomena (1)

J.W. Goodman, �??Statistical Properties of Laser Speckle Patterns,�?? in Laser speckle and related phenomena, Vol.9 in series Topics in Applied Physics, J.C. Dainty, Ed., (Springer-Verlag, Berlin, Heidelberg New York Tokyo, 1984).

Opt. Express (3)

Phys. Rev. B (1)

F.C. Mackintosh, J.X. Zhu, D.J. Pine, D.A. Weitz, �??Polarization memory of multiply scattered light,�?? Phys. Rev. B 40, 9342- 9345 (1989).
[CrossRef]

Proc. SPIE (2)

K. Ishii, T. Iwai, S.Wada, and M. Miyakoshi, �??Simultaneous viscometry and particle sizing on the basis of dynamic light scattering,�?? Proc. SPIE 4263, 112-121 (2001).
[CrossRef]

D.A. Zimnyakov, V.V. Tuchin, K.V. Larin, A.A. Mishin, �??Speckle patterns polarization analysis as an approach to turbid tissues structure monitoring,�?? Proc. SPIE 2981, 172-180 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Top view of the experimental set-up, P1 and P2 are linear polarizers, QWP1 and QWP2 are quarter-wave plates. Sample dimensions are 1×1×4 cm.

Fig. 2.
Fig. 2.

Different types of photons emerging from a scattering medium for an incident light linearly or circularly polarized [15].

Fig. 3.
Fig. 3.

(a) and (b) illustrate the speckle produced by the 1.44-µm microspheres and 0.20-µm microspheres (linear polarization) when µs =140 cm-1.

Fig. 4.
Fig. 4.

Scheme summing about the evolution of data produced by small and large microspheres (g=0.323 and 0.928, respectively).

Fig. 5.
Fig. 5.

Evolution of speckle size versus the reduced scattering coefficient for all samples.

Fig. 6.
Fig. 6.

Evolution of speckle size a) and polarization degree b) versus scattering coefficient for semi-skimmed milk.

Fig. 7.
Fig. 7.

Variations of dypl - dycl versus the scattering coefficient for semi-skimmed milk.

Tables (5)

Tables Icon

Table 1. Scattering coefficients of polystyrene-microspheres measured and anisotropy coefficient calculated (Mie calculation).

Tables Icon

Table 2. dy in µm and polarization degree obtained for all the samples. Mix (1:1): 1:1 volume ratio mixtures of 0.20-µm microspheres (µs =140 cm-1) and 1.44-µm microspheres (µs =140 cm-1), Mix (1:5): 1:5 volume ratio mixtures.

Tables Icon

Table 3. dy in µm for different milks, µs =42 cm-1.

Tables Icon

Table 4. dypl - dycl in µm for sample with distribution in size of scatterers. Mix (1:1): 1:1 volume ratio mixtures of 0.20-µm microspheres (µs =140 cm-1) and 1.44-µm microspheres (µs =140 cm-1), Mix (1:5): 1:5 volume ratio mixtures.

Tables Icon

Table 5. dy in µm for human whole blood and pig skin

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

c I ( Δ x , Δ y ) = F T 1 [ F T [ I ( x , y ) ] 2 ] I ( x , y ) 2 I ( x , y ) 2 I ( x , y ) 2
D p = I p I c I p + I c

Metrics