Abstract

Continuous wave photorefractive-like all-optical switching was demonstrated using a twisted nematic liquid crystal cell composed of the liquid crystal 5CB (4-pentyl-4’-cyanobiphenyl) with polyvinyl alcohol (PVA) aligning layers. The nonlinear optical effect involved is due to optical control of surface charge on the polyvinyl alcohol alignment layer. The cell exhibits strong optical control of the Friedericksz transition by an argon ion laser. A mechanism is proposed involving the modulation of the charge double layer by photoinduced charge. Optical limiting in the milliwatt range was observed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I.C. Khoo. �??Orientation photorefractive effects in nematic liquid crystal films,�?? IEEE J. Quant. Elec. 32, 525-534 (1996).
    [CrossRef]
  2. T. Grudniewski, J. Parka, R. Dabrowski, A. Januszko, and A. Miniewicz. �??Investigation of the diffraction efficiency in dye-doped LC cells under low frequency AC voltage,�?? Opto-Electron. Rev. 10, 11-15 (2002).
  3. M. Kaczmaerk, A Dyadusha, S. Slussarenko, and I. C. Khoo. �??The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,�?? J. Appl. Phys. 96, 2616-2623 (2004).
    [CrossRef]
  4. G. Barbero, L.R. Evangelista, and N.V. Madhusudana. �??Effect of surface electric field on the anchoringof nematic liquid crystals,�?? Eur. Phys. J. B 1, 327-331 (1998).
    [CrossRef]
  5. Nelson V. Tabiryan and Cesare Umeton. �??Surface-activated photorefractivity and electro-optic phenomena in liquid crystals,�?? J. Opt. Soc. Am. B 15, 1912-1917 (1998).
    [CrossRef]
  6. G. Barbero, A.K. Zvezdin, L.R. Evangelista. �??Ionic adsorption and equilibrium distribution of charges in a nematic cell,�?? Phys. Rev. E 59, 1846-1849 (1999).
    [CrossRef]
  7. J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov. �??Electrically controlled surface diffraction gratings in nematic liquid crystals,�?? Opt. Lett. 25, 414-416 (2000).
    [CrossRef]
  8. P. Pagliusi, and G. Cipparone. �??Surface-induced photorefractive-like effect in pure liquid crystals,�?? Appl. Phys. Lett. 80, 168-170 (2002).
    [CrossRef]
  9. P. Pagliusi, and G. Cipparone. �??Charge transport due to photoelectric surface activation in pure nematic liquid crystal cells,�?? J. Appl. Phys. 92, 4863-4869 (2002).
    [CrossRef]
  10. P.J. Brewer, P.A. Lane, A.J. deMello, D.D.C. Bradley DDC, and J.C. deMello, �??Internal field screening in polymer light-emitting diodes,�?? Adv. Mater. 14, 562-570 (2004), and references therein.
  11. Oksana Ostroverkhova and Kenneth D. Singer, �??Space-charge dynamics in photorefractive polymers,�?? J. Appl. Phys. 92, 1727-1743 (2002).
    [CrossRef]
  12. Valeriy Boichuk, Sergey Kucheev, Janusz Parka, Victor Reshetnyak, Yuriy Reznikov, Irina Shiyanovkaya, Kenneth D. Singer, and Sergy Slussarenko. �??Surface-mediated light controlled Friederickz transition in a nematic liquid crystal cell,�?? J. Appl. Phys. 90, 5963-5967 (2001).

Adv. Mater. (1)

P.J. Brewer, P.A. Lane, A.J. deMello, D.D.C. Bradley DDC, and J.C. deMello, �??Internal field screening in polymer light-emitting diodes,�?? Adv. Mater. 14, 562-570 (2004), and references therein.

Appl. Phys. Lett. (1)

P. Pagliusi, and G. Cipparone. �??Surface-induced photorefractive-like effect in pure liquid crystals,�?? Appl. Phys. Lett. 80, 168-170 (2002).
[CrossRef]

Eur. Phys. J. B (1)

G. Barbero, L.R. Evangelista, and N.V. Madhusudana. �??Effect of surface electric field on the anchoringof nematic liquid crystals,�?? Eur. Phys. J. B 1, 327-331 (1998).
[CrossRef]

IEEE J. Quant. Elec. (1)

I.C. Khoo. �??Orientation photorefractive effects in nematic liquid crystal films,�?? IEEE J. Quant. Elec. 32, 525-534 (1996).
[CrossRef]

J. Appl. Phys. (4)

P. Pagliusi, and G. Cipparone. �??Charge transport due to photoelectric surface activation in pure nematic liquid crystal cells,�?? J. Appl. Phys. 92, 4863-4869 (2002).
[CrossRef]

M. Kaczmaerk, A Dyadusha, S. Slussarenko, and I. C. Khoo. �??The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,�?? J. Appl. Phys. 96, 2616-2623 (2004).
[CrossRef]

Oksana Ostroverkhova and Kenneth D. Singer, �??Space-charge dynamics in photorefractive polymers,�?? J. Appl. Phys. 92, 1727-1743 (2002).
[CrossRef]

Valeriy Boichuk, Sergey Kucheev, Janusz Parka, Victor Reshetnyak, Yuriy Reznikov, Irina Shiyanovkaya, Kenneth D. Singer, and Sergy Slussarenko. �??Surface-mediated light controlled Friederickz transition in a nematic liquid crystal cell,�?? J. Appl. Phys. 90, 5963-5967 (2001).

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

T. Grudniewski, J. Parka, R. Dabrowski, A. Januszko, and A. Miniewicz. �??Investigation of the diffraction efficiency in dye-doped LC cells under low frequency AC voltage,�?? Opto-Electron. Rev. 10, 11-15 (2002).

Phys. Rev. E (1)

G. Barbero, A.K. Zvezdin, L.R. Evangelista. �??Ionic adsorption and equilibrium distribution of charges in a nematic cell,�?? Phys. Rev. E 59, 1846-1849 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experiment layout. The pump laser (green) is an Argon ion laser (λ=488nm); the probe laser (red) is a HeNe laser (<1mW).

Fig. 2.
Fig. 2.

Friedericksz transition measurements. Black line is ac (RMS) voltage, red line is dc voltage, and blue line is dc voltage with 730 mW/cm2 pump applied. All three vertical lines correspond to the transient measurements shown in Fig. 5.

Fig. 3.
Fig. 3.

Optical gate measurement. Pump applied (2.6W/cm2) at the first vertical line, and turned off at the second vertical line. The bias voltage is 4.34V dc.

Fig. 4.
Fig. 4.

Model of the observed effects. Charged layers are shown at the interface between the liquid crystal and the alignment layers.

Fig. 5.
Fig. 5.

Transient (a) optical transmittance (transmittance=1 at time=0 in all cases) and (b) current following application of a dc voltage as indicated.

Fig. 6.
Fig. 6.

Optical limiting and saturation. Data is normalized to the transmission at very low power (microwatt) input. The beam was not focused and had a 1 mm diameter.

Metrics