Abstract

The electromagnetic field of a high-quality photonic crystal nanocavity is computed using the finite difference time domain method. It is shown that a separatrix occurs in the local energy flux discriminating between predominantly near and far field components. Placing a two-level atom into the cavity leads to characteristic field modifications and normal-mode splitting in the transmission spectra.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995)
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, �??Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,�?? Nature 432, 200-203 (2004)
    [CrossRef]
  3. T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, �??High quality two-dimensional photonic crystal slab cavities,�?? Appl. Phys. Lett. 79, 4289 - 4291 (2001).
    [CrossRef]
  4. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, �??Design of photonic crystal microcavities for cavity QED,�?? Phys. Rev. E 65, 016608-1-11 (2001).
    [CrossRef]
  5. H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors 4th ed., (World Scientific, Singapore, 2004).
  6. L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms. (Dover, 1975)
  7. A. Taflove and S.C. Hagness, Computational Electrodynamics: the FDTD method 2nd ed. (Artech House, Boston, London, 2000)
  8. N. Kaneda, B. Houshmand, and T. Itoh, �??FDTD Analysis of Dielectric Resonators with Curved Surfaces,�?? IEEE Trans. On Microwave Theory and Techniques 45, 1645-1649 (1997).
    [CrossRef]
  9. L. Mandel, and E. Wolf, Optical coherence and quantum optics (Cambridge Univ. Press, 1995)
  10. P.R. Berman (Editor), Cavity Quantum Electrodynamics (Academic Press, San Diego, 1994)
  11. Full versions of animations are available at: <a href="http://acms.arizona.edu/oe/">http://acms.arizona.edu/oe/</a>

Appl. Phys. Lett. (1)

T. Yoshie, J. Vuckovic, A. Scherer, H. Chen, and D. Deppe, �??High quality two-dimensional photonic crystal slab cavities,�?? Appl. Phys. Lett. 79, 4289 - 4291 (2001).
[CrossRef]

IEEE Trans. On Microwave Theory and Tech (1)

N. Kaneda, B. Houshmand, and T. Itoh, �??FDTD Analysis of Dielectric Resonators with Curved Surfaces,�?? IEEE Trans. On Microwave Theory and Techniques 45, 1645-1649 (1997).
[CrossRef]

Nature (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, �??Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,�?? Nature 432, 200-203 (2004)
[CrossRef]

Phys. Rev. E (1)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, �??Design of photonic crystal microcavities for cavity QED,�?? Phys. Rev. E 65, 016608-1-11 (2001).
[CrossRef]

Other (7)

H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors 4th ed., (World Scientific, Singapore, 2004).

L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms. (Dover, 1975)

A. Taflove and S.C. Hagness, Computational Electrodynamics: the FDTD method 2nd ed. (Artech House, Boston, London, 2000)

L. Mandel, and E. Wolf, Optical coherence and quantum optics (Cambridge Univ. Press, 1995)

P.R. Berman (Editor), Cavity Quantum Electrodynamics (Academic Press, San Diego, 1994)

Full versions of animations are available at: <a href="http://acms.arizona.edu/oe/">http://acms.arizona.edu/oe/</a>

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995)

Supplementary Material (3)

» Media 1: MPG (1229 KB)     
» Media 2: MPG (2427 KB)     
» Media 3: MPG (1628 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics