Abstract

An experimental study of light propagation near a small band gap for a lattice-of-holes InP photonic crystal waveguide is reported. Polarization-resolved measurements of power transmission, reflection and group delay clearly reveal the PC waveguide filtering properties. Group delay enhancement was observed close to the band-edges together with very large dispersion. The test devices were fabricated with a novel technique that allows incorporation of deeply-etched photonic crystals within an InP photonic integrated circuit.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Analysis of photonic crystal waveguide gratings with coupled-mode theory and a finite-element method

Takeshi Fujisawa and Masanori Koshiba
Appl. Opt. 45(17) 4114-4121 (2006)

Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings

W. C. L. Hopman, H. J. W. M. Hoekstra, R. Dekker, L. Zhuang, and R .M. de Ridder
Opt. Express 15(4) 1851-1870 (2007)

Slow-light regime and critical coupling in highly multimode corrugated waveguides

H. Kurt, H. Benisty, T. Melo, O. Khayam, and C. Cambournac
J. Opt. Soc. Am. B 25(12) C1-C14 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, “Observation of Pulse Compression in Photonic Crystal Coupled Cavity Waveguides,” J. Lightwave Technol. 22514–519 (2004).
    [Crossref]
  2. A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, “Pulse compression in Line Defect Photonic Waveguide,” in Proceedings of the Optical Fiber Communications Conference2005, Paper OWD5.
  3. M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett 87253902-1–4 (2001).
    [Crossref]
  4. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express 111490 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
    [Crossref] [PubMed]
  5. S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, and T. F. Krauss, ‘Transmission properties of two-dimensional photonic crystal channel waveguides,” Opt. Quantum Electron. 34171–181 (2002).
    [Crossref]
  6. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107 (1996).
    [Crossref]
  7. H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
    [Crossref]
  8. M. L. Mašanović, V. Lal, J. A. Summers, J. S. Barton, E. J. Skogen, L. G. Rau, L. A. Coldren, and D. J. Blumenthal, “Widely-Tunable Monolithically-Integrated All-Optical Wavelength Converters in InP,” J. Lightwave Technol. 231350–62 (2005).
    [Crossref]
  9. S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE Jour. Quantum Elec. 40, 1306–14 (2004).
    [Crossref]
  10. A. Xing, M. Davanço, D. J. Blumenthal, and E. L. Hu, “Fabrication of InP-based two-dimensional photonic crystal membrane,” J. Vac. Sci. Technol. B 2270 (2004).
    [Crossref]
  11. T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U. Wagemann, and O. Funke, “A new method to determine loss, PDL, GD and DGD of passive optical components”, 18th NFOEC, Dallas, September 2002.
  12. E. Collett, Polarized Light in Fiber Optics (The PolaWave Group, 2003), Chap. 13.
  13. K. Yamaguchi, M. Kelly, G. Stolze, and D. Kobasevic, “Polarization-Resolved Measurements using Mueller Matrix Analysis,” Agilent application note 5989-1261EN.
  14. The MIT Photonic-Bands package, http://www.ab-inito.mit.edu/mpb/
  15. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” App. Phys. Lett. 811163 (2002).
    [Crossref]
  16. L. J. Gamble, W. M. Diffey, S. T. Cole, R. L. Fork, D. K. Jones, T. R. Nelson, J. P. Loehr, and J. E. Ehret, “Simultaneous measurement of group delay and transmission of a one-dimensional photonic crystal,” Opt. Express 5267 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-11-267.
    [Crossref] [PubMed]
  17. G. von Freymann, S. John, S. Wong, V. Kitaev, and G. A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” App. Phys. Lett. 86053108 (2005).
    [Crossref]
  18. L. A Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Intersciences), Chap. 6.
  19. P. St. Russel, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” Jour. Modern Optics 381599–1619 (1991).
    [Crossref]
  20. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg Gratings for Dispersion Compensation in Transmission: Theoretical Model and Design Criteria for Nearly Ideal Pulse Recompression,” J. Lightwave Technol. 151303 (1997).
    [Crossref]

2005 (2)

M. L. Mašanović, V. Lal, J. A. Summers, J. S. Barton, E. J. Skogen, L. G. Rau, L. A. Coldren, and D. J. Blumenthal, “Widely-Tunable Monolithically-Integrated All-Optical Wavelength Converters in InP,” J. Lightwave Technol. 231350–62 (2005).
[Crossref]

G. von Freymann, S. John, S. Wong, V. Kitaev, and G. A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” App. Phys. Lett. 86053108 (2005).
[Crossref]

2004 (3)

S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE Jour. Quantum Elec. 40, 1306–14 (2004).
[Crossref]

A. Xing, M. Davanço, D. J. Blumenthal, and E. L. Hu, “Fabrication of InP-based two-dimensional photonic crystal membrane,” J. Vac. Sci. Technol. B 2270 (2004).
[Crossref]

T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, “Observation of Pulse Compression in Photonic Crystal Coupled Cavity Waveguides,” J. Lightwave Technol. 22514–519 (2004).
[Crossref]

2003 (1)

2002 (3)

S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, and T. F. Krauss, ‘Transmission properties of two-dimensional photonic crystal channel waveguides,” Opt. Quantum Electron. 34171–181 (2002).
[Crossref]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” App. Phys. Lett. 811163 (2002).
[Crossref]

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

2001 (1)

M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett 87253902-1–4 (2001).
[Crossref]

1999 (1)

1997 (1)

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg Gratings for Dispersion Compensation in Transmission: Theoretical Model and Design Criteria for Nearly Ideal Pulse Recompression,” J. Lightwave Technol. 151303 (1997).
[Crossref]

1996 (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107 (1996).
[Crossref]

1991 (1)

P. St. Russel, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” Jour. Modern Optics 381599–1619 (1991).
[Crossref]

Barton, J. S.

Bendickson, J. M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107 (1996).
[Crossref]

Benisty, H.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express 111490 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, and T. F. Krauss, ‘Transmission properties of two-dimensional photonic crystal channel waveguides,” Opt. Quantum Electron. 34171–181 (2002).
[Crossref]

Blumenthal, D. J.

M. L. Mašanović, V. Lal, J. A. Summers, J. S. Barton, E. J. Skogen, L. G. Rau, L. A. Coldren, and D. J. Blumenthal, “Widely-Tunable Monolithically-Integrated All-Optical Wavelength Converters in InP,” J. Lightwave Technol. 231350–62 (2005).
[Crossref]

A. Xing, M. Davanço, D. J. Blumenthal, and E. L. Hu, “Fabrication of InP-based two-dimensional photonic crystal membrane,” J. Vac. Sci. Technol. B 2270 (2004).
[Crossref]

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, “Pulse compression in Line Defect Photonic Waveguide,” in Proceedings of the Optical Fiber Communications Conference2005, Paper OWD5.

Camatel, S.

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, “Pulse compression in Line Defect Photonic Waveguide,” in Proceedings of the Optical Fiber Communications Conference2005, Paper OWD5.

Cassagne, D.

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

Chai, Y. J.

Coldren, L. A

L. A Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Intersciences), Chap. 6.

Coldren, L. A.

Cole, S. T.

Collett, E.

E. Collett, Polarized Light in Fiber Optics (The PolaWave Group, 2003), Chap. 13.

Corzine, S. W.

L. A Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Intersciences), Chap. 6.

Davanço, M.

A. Xing, M. Davanço, D. J. Blumenthal, and E. L. Hu, “Fabrication of InP-based two-dimensional photonic crystal membrane,” J. Vac. Sci. Technol. B 2270 (2004).
[Crossref]

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, “Pulse compression in Line Defect Photonic Waveguide,” in Proceedings of the Optical Fiber Communications Conference2005, Paper OWD5.

Diffey, W. M.

Dowling, J. P.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107 (1996).
[Crossref]

Eggleton, B. J.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg Gratings for Dispersion Compensation in Transmission: Theoretical Model and Design Criteria for Nearly Ideal Pulse Recompression,” J. Lightwave Technol. 151303 (1997).
[Crossref]

Ehret, J. E.

Forchel, A.

S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE Jour. Quantum Elec. 40, 1306–14 (2004).
[Crossref]

Fork, R. L.

Funke, O.

T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U. Wagemann, and O. Funke, “A new method to determine loss, PDL, GD and DGD of passive optical components”, 18th NFOEC, Dallas, September 2002.

Gamble, L. J.

Guang-Hua, D.

S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE Jour. Quantum Elec. 40, 1306–14 (2004).
[Crossref]

Houdré, R.

Hu, E. L.

A. Xing, M. Davanço, D. J. Blumenthal, and E. L. Hu, “Fabrication of InP-based two-dimensional photonic crystal membrane,” J. Vac. Sci. Technol. B 2270 (2004).
[Crossref]

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, “Pulse compression in Line Defect Photonic Waveguide,” in Proceedings of the Optical Fiber Communications Conference2005, Paper OWD5.

Jensen, T.

T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U. Wagemann, and O. Funke, “A new method to determine loss, PDL, GD and DGD of passive optical components”, 18th NFOEC, Dallas, September 2002.

John, S.

G. von Freymann, S. John, S. Wong, V. Kitaev, and G. A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” App. Phys. Lett. 86053108 (2005).
[Crossref]

Jones, D. K.

Jouanin, C.

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

Kamp, M

S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE Jour. Quantum Elec. 40, 1306–14 (2004).
[Crossref]

Karle, T. J.

Kelly, M.

K. Yamaguchi, M. Kelly, G. Stolze, and D. Kobasevic, “Polarization-Resolved Measurements using Mueller Matrix Analysis,” Agilent application note 5989-1261EN.

Kitaev, V.

G. von Freymann, S. John, S. Wong, V. Kitaev, and G. A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” App. Phys. Lett. 86053108 (2005).
[Crossref]

Kobasevic, D.

K. Yamaguchi, M. Kelly, G. Stolze, and D. Kobasevic, “Polarization-Resolved Measurements using Mueller Matrix Analysis,” Agilent application note 5989-1261EN.

Krauss, T. F.

T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, “Observation of Pulse Compression in Photonic Crystal Coupled Cavity Waveguides,” J. Lightwave Technol. 22514–519 (2004).
[Crossref]

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express 111490 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, and T. F. Krauss, ‘Transmission properties of two-dimensional photonic crystal channel waveguides,” Opt. Quantum Electron. 34171–181 (2002).
[Crossref]

Lal, V.

Lalanne, Ph.

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

Lelarge, F.

S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE Jour. Quantum Elec. 40, 1306–14 (2004).
[Crossref]

Litchinitser, N. M.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg Gratings for Dispersion Compensation in Transmission: Theoretical Model and Design Criteria for Nearly Ideal Pulse Recompression,” J. Lightwave Technol. 151303 (1997).
[Crossref]

Loehr, J. P.

Mankopf, S.

S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE Jour. Quantum Elec. 40, 1306–14 (2004).
[Crossref]

März, R

S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE Jour. Quantum Elec. 40, 1306–14 (2004).
[Crossref]

Mašanovic, M. L.

Morgan, C. N.

Nelson, T. R.

Notomi, M.

M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett 87253902-1–4 (2001).
[Crossref]

Olivier, S.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express 111490 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, and T. F. Krauss, ‘Transmission properties of two-dimensional photonic crystal channel waveguides,” Opt. Quantum Electron. 34171–181 (2002).
[Crossref]

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

Ozin, G. A.

G. von Freymann, S. John, S. Wong, V. Kitaev, and G. A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” App. Phys. Lett. 86053108 (2005).
[Crossref]

Paduch, A.

T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U. Wagemann, and O. Funke, “A new method to determine loss, PDL, GD and DGD of passive optical components”, 18th NFOEC, Dallas, September 2002.

Patterson, D. B.

N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg Gratings for Dispersion Compensation in Transmission: Theoretical Model and Design Criteria for Nearly Ideal Pulse Recompression,” J. Lightwave Technol. 151303 (1997).
[Crossref]

Qiu, M.

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” App. Phys. Lett. 811163 (2002).
[Crossref]

Rattier, M.

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, and T. F. Krauss, ‘Transmission properties of two-dimensional photonic crystal channel waveguides,” Opt. Quantum Electron. 34171–181 (2002).
[Crossref]

Rau, L. G.

Russel, P. St.

P. St. Russel, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” Jour. Modern Optics 381599–1619 (1991).
[Crossref]

Scalora, M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107 (1996).
[Crossref]

Shynia, A.

M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett 87253902-1–4 (2001).
[Crossref]

Skogen, E. J.

Smith, C. J. M.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express 111490 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, and T. F. Krauss, ‘Transmission properties of two-dimensional photonic crystal channel waveguides,” Opt. Quantum Electron. 34171–181 (2002).
[Crossref]

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

Stolze, G.

K. Yamaguchi, M. Kelly, G. Stolze, and D. Kobasevic, “Polarization-Resolved Measurements using Mueller Matrix Analysis,” Agilent application note 5989-1261EN.

Summers, J. A.

Takahashi, C.

M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett 87253902-1–4 (2001).
[Crossref]

Takahashi, J.

M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett 87253902-1–4 (2001).
[Crossref]

von Freymann, G.

G. von Freymann, S. John, S. Wong, V. Kitaev, and G. A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” App. Phys. Lett. 86053108 (2005).
[Crossref]

Wagemann, E.U.

T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U. Wagemann, and O. Funke, “A new method to determine loss, PDL, GD and DGD of passive optical components”, 18th NFOEC, Dallas, September 2002.

Weisbuch, C.

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré, “Coupled-mode theory and propagation losses in photonic crystal waveguides,” Opt. Express 111490 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490.
[Crossref] [PubMed]

S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, and T. F. Krauss, ‘Transmission properties of two-dimensional photonic crystal channel waveguides,” Opt. Quantum Electron. 34171–181 (2002).
[Crossref]

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

White, I. H.

Witzel, E.

T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U. Wagemann, and O. Funke, “A new method to determine loss, PDL, GD and DGD of passive optical components”, 18th NFOEC, Dallas, September 2002.

Wong, S.

G. von Freymann, S. John, S. Wong, V. Kitaev, and G. A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” App. Phys. Lett. 86053108 (2005).
[Crossref]

Xing, A.

A. Xing, M. Davanço, D. J. Blumenthal, and E. L. Hu, “Fabrication of InP-based two-dimensional photonic crystal membrane,” J. Vac. Sci. Technol. B 2270 (2004).
[Crossref]

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, “Pulse compression in Line Defect Photonic Waveguide,” in Proceedings of the Optical Fiber Communications Conference2005, Paper OWD5.

Yamada, K.

M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett 87253902-1–4 (2001).
[Crossref]

Yamaguchi, K.

K. Yamaguchi, M. Kelly, G. Stolze, and D. Kobasevic, “Polarization-Resolved Measurements using Mueller Matrix Analysis,” Agilent application note 5989-1261EN.

Yokohama, I.

M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett 87253902-1–4 (2001).
[Crossref]

Ziegler, P.

T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U. Wagemann, and O. Funke, “A new method to determine loss, PDL, GD and DGD of passive optical components”, 18th NFOEC, Dallas, September 2002.

App. Phys. Lett. (2)

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” App. Phys. Lett. 811163 (2002).
[Crossref]

G. von Freymann, S. John, S. Wong, V. Kitaev, and G. A. Ozin, “Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,” App. Phys. Lett. 86053108 (2005).
[Crossref]

IEEE Jour. Quantum Elec. (1)

S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE Jour. Quantum Elec. 40, 1306–14 (2004).
[Crossref]

J. Lightwave Technol. (3)

J. Vac. Sci. Technol. B (1)

A. Xing, M. Davanço, D. J. Blumenthal, and E. L. Hu, “Fabrication of InP-based two-dimensional photonic crystal membrane,” J. Vac. Sci. Technol. B 2270 (2004).
[Crossref]

Jour. Modern Optics (1)

P. St. Russel, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” Jour. Modern Optics 381599–1619 (1991).
[Crossref]

Opt. Express (2)

Opt. Quantum Elec. (1)

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, and D. Cassagne, ‘Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,” Opt. Quantum Elec. 34205–215 (2002).
[Crossref]

Opt. Quantum Electron. (1)

S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, and T. F. Krauss, ‘Transmission properties of two-dimensional photonic crystal channel waveguides,” Opt. Quantum Electron. 34171–181 (2002).
[Crossref]

Phys. Rev. E (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107 (1996).
[Crossref]

Phys. Rev. Lett (1)

M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett 87253902-1–4 (2001).
[Crossref]

Other (6)

L. A Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Intersciences), Chap. 6.

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, and E. L. Hu, “Pulse compression in Line Defect Photonic Waveguide,” in Proceedings of the Optical Fiber Communications Conference2005, Paper OWD5.

T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U. Wagemann, and O. Funke, “A new method to determine loss, PDL, GD and DGD of passive optical components”, 18th NFOEC, Dallas, September 2002.

E. Collett, Polarized Light in Fiber Optics (The PolaWave Group, 2003), Chap. 13.

K. Yamaguchi, M. Kelly, G. Stolze, and D. Kobasevic, “Polarization-Resolved Measurements using Mueller Matrix Analysis,” Agilent application note 5989-1261EN.

The MIT Photonic-Bands package, http://www.ab-inito.mit.edu/mpb/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) W3(M) waveguide. The first triangular lattice Brillouin zone is displayed underneath. (b) Top-view schematic of fabricated devices.

Fig. 2.
Fig. 2.

(a) Schematic cross-section of a ridge waveguide, showing the different waveguide layers. Mesas have the exact same structure. (b) SEM micrograph of a mesa cross section, showing etched photonic crystal holes.

Fig. 3.
Fig. 3.

(a) Band structure for TM modes of a W3(M) waveguide with r/a=0.265 and n=3.26. The yellow shaded area indicates the mini-band-gap position. (b) Corresponding TM transmission curves for devices with a=400nm, a=420nm, and a=440nm. (c) Band structure for TE modes. The bulk-crystal air-band edge is depicted as a continuous line. (d) Corresponding TE transmission curves for the same devices. In both (a) and (c), the color scale relates to the electric field energy confined in the defect region.

Fig. 4.
Fig. 4.

Transmission (T), reflection (R) and excess group delay (τg) for waveguides with two different lattice constants. Black curves are experimental, blue and red are fitted. (a) a=400nm. (b) a=420nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t = 2 σ ( z + σ ) e + σ L ( z σ ) e σ L
r = 2 i κ sinh ( σ L ) ( z + σ ) e + σ L ( z σ ) e σ L

Metrics