Abstract

An experimental study of light propagation near a small band gap for a lattice-of-holes InP photonic crystal waveguide is reported. Polarization-resolved measurements of power transmission, reflection and group delay clearly reveal the PC waveguide filtering properties. Group delay enhancement was observed close to the band-edges together with very large dispersion. The test devices were fabricated with a novel technique that allows incorporation of deeply-etched photonic crystals within an InP photonic integrated circuit.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, �??Observation of Pulse Compression in Photonic Crystal Coupled Cavity Waveguides,�?? J. Lightwave Technol. 22 514-519 (2004).
    [CrossRef]
  2. A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, E. L. Hu, �?? Pulse compression in Line Defect Photonic Waveguide ,�?? in Proceedings of the Optical Fiber Communications Conference 2005, Paper OWD5.
  3. M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, I. Yokohama, �??Extremely Large Group- Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,�?? Phys. Rev. Lett 87 253902-1-4 (2001).
    [CrossRef]
  4. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré , �??Coupled-mode theory and propagation losses in photonic crystal waveguides,�?? Opt. Express 11, 1490 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1490</a>.
    [CrossRef] [PubMed]
  5. S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, T. F. Krauss, �??Transmission properties of two-dimensional photonic crystal channel waveguides,�?? Opt. Quantum Electron. 34 171-181 (2002).
    [CrossRef]
  6. J. M. Bendickson, J. P. Dowling, M. Scalora, �??Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,�?? Phys. Rev. E 53, 4107 (1996).
    [CrossRef]
  7. H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, D. Cassagne, �??Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,�?? Opt. Quantum Elec. 34 205-215 (2002).
    [CrossRef]
  8. M. L. Mašanoviæ, V. Lal, J. A. Summers , J. S. Barton, E. J. Skogen, Rau, L. G., L. A. Coldren and D. J. Blumenthal, �??Widely-Tunable Monolithically-Integrated All-Optical Wavelength Converters in InP,�?? J. Lightwave Technol. 23 1350-62 (2005).
    [CrossRef]
  9. S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, A. Forchel, �??Tunable photonic crystal coupledcavity laser,�?? IEEE J. Quantum Electron. 40, 1306-14 (2004).
    [CrossRef]
  10. A. Xing, M. Davanço, D. J. Blumenthal, E. L. Hu, �??Fabrication of InP-based two-dimensional photonic crystal membrane,�?? J. Vac. Sci. Technol. B 22 70 (2004).
    [CrossRef]
  11. T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U.Wagemann and O. Funke, �??A new method to determine loss, PDL, GD and DGD of passive optical components�??, 18th NFOEC, Dallas, September 2002.
  12. E. Collett, Polarized Light in Fiber Optics (The PolaWave Group, 2003), Chap. 13.
  13. K. Yamaguchi, M. Kelly, G. Stolze, D. Kobasevic, �??Polarization-Resolved Measurements using Mueller Matrix Analysis,�?? Agilent application note 5989-1261EN.
  14. The MIT Photonic-Bands package, <a href="http://ab-initio.mit.edu/mpb/">http://www.ab-inito.mit.edu/mpb/</a>
  15. M. Qiu, �??Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,�?? App. Phys. Lett. 81 1163 (2002).
    [CrossRef]
  16. L. J. Gamble, W. M. Diffey, S. T. Cole, R. L. Fork, D. K. Jones, T. R. Nelson, Jr., J. P. Loehr, J. E. Ehret, �??Simultaneous measurement of group delay and transmission of a one-dimensional photonic crystal,�?? Opt. Express 5 267 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-11-267">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-5-11-267.</a>
    [CrossRef] [PubMed]
  17. G. von Freymann, S. John, S. Wong, V. Kitaev, G. A. Ozin, �??Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,�?? App. Phys. Lett. 86 053108 (2005).
    [CrossRef]
  18. L. A Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Intersciences), Chap. 6.
  19. P. St. Russel, �??Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,�?? J. Mod. Opt. 38, 1599-1619 (1991).
    [CrossRef]
  20. N. M. Litchinitser, B. J. Eggleton, D. B. Patterson, �?? Fiber Bragg Gratings for Dispersion Compensation in Transmission: Theoretical Model and Design Criteria for Nearly Ideal Pulse Recompression,�?? J. Lightwave Technol. 15 1303 (1997).
    [CrossRef]

Agilent application note (1)

K. Yamaguchi, M. Kelly, G. Stolze, D. Kobasevic, �??Polarization-Resolved Measurements using Mueller Matrix Analysis,�?? Agilent application note 5989-1261EN.

App. Phys. Lett. (2)

M. Qiu, �??Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,�?? App. Phys. Lett. 81 1163 (2002).
[CrossRef]

G. von Freymann, S. John, S. Wong, V. Kitaev, G. A. Ozin, �??Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region,�?? App. Phys. Lett. 86 053108 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Mankopf, R März, M Kamp, D. Guang-Hua, F. Lelarge, A. Forchel, �??Tunable photonic crystal coupledcavity laser,�?? IEEE J. Quantum Electron. 40, 1306-14 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Mod. Opt. (1)

P. St. Russel, �??Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,�?? J. Mod. Opt. 38, 1599-1619 (1991).
[CrossRef]

J. Vac. Sci. Technol. B (1)

A. Xing, M. Davanço, D. J. Blumenthal, E. L. Hu, �??Fabrication of InP-based two-dimensional photonic crystal membrane,�?? J. Vac. Sci. Technol. B 22 70 (2004).
[CrossRef]

NFOEC (1)

T. Jensen, E. Witzel, A. Paduch, P. Ziegler, E.U.Wagemann and O. Funke, �??A new method to determine loss, PDL, GD and DGD of passive optical components�??, 18th NFOEC, Dallas, September 2002.

Opt. Express (2)

Opt. Quantum Elec. (1)

H. Benisty, Ph. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C. J. M. Smith, T. F. Krauss, C. Jouanin, D. Cassagne, �??Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals,�?? Opt. Quantum Elec. 34 205-215 (2002).
[CrossRef]

Opt. Quantum Electron. (1)

S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, T. F. Krauss, �??Transmission properties of two-dimensional photonic crystal channel waveguides,�?? Opt. Quantum Electron. 34 171-181 (2002).
[CrossRef]

Phys. Rev. E (1)

J. M. Bendickson, J. P. Dowling, M. Scalora, �??Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,�?? Phys. Rev. E 53, 4107 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shynia, J. Takahashi, C. Takahashi, I. Yokohama, �??Extremely Large Group- Velocity of Line-Defect Waveguides in Photonic Crystal Slabs,�?? Phys. Rev. Lett 87 253902-1-4 (2001).
[CrossRef]

Proc. OFC (1)

A. Xing, M. Davanço, S. Camatel, D. J. Blumenthal, E. L. Hu, �?? Pulse compression in Line Defect Photonic Waveguide ,�?? in Proceedings of the Optical Fiber Communications Conference 2005, Paper OWD5.

Other (3)

E. Collett, Polarized Light in Fiber Optics (The PolaWave Group, 2003), Chap. 13.

The MIT Photonic-Bands package, <a href="http://ab-initio.mit.edu/mpb/">http://www.ab-inito.mit.edu/mpb/</a>

L. A Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Intersciences), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) W3(M) waveguide. The first triangular lattice Brillouin zone is displayed underneath. (b) Top-view schematic of fabricated devices.

Fig. 2.
Fig. 2.

(a) Schematic cross-section of a ridge waveguide, showing the different waveguide layers. Mesas have the exact same structure. (b) SEM micrograph of a mesa cross section, showing etched photonic crystal holes.

Fig. 3.
Fig. 3.

(a) Band structure for TM modes of a W3(M) waveguide with r/a=0.265 and n=3.26. The yellow shaded area indicates the mini-band-gap position. (b) Corresponding TM transmission curves for devices with a=400nm, a=420nm, and a=440nm. (c) Band structure for TE modes. The bulk-crystal air-band edge is depicted as a continuous line. (d) Corresponding TE transmission curves for the same devices. In both (a) and (c), the color scale relates to the electric field energy confined in the defect region.

Fig. 4.
Fig. 4.

Transmission (T), reflection (R) and excess group delay (τg) for waveguides with two different lattice constants. Black curves are experimental, blue and red are fitted. (a) a=400nm. (b) a=420nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t = 2 σ ( z + σ ) e + σ L ( z σ ) e σ L
r = 2 i κ sinh ( σ L ) ( z + σ ) e + σ L ( z σ ) e σ L

Metrics