Abstract

We demonstrate the generation of 9.8±0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti:Sapphire oscillator to 23 mJ/pulse, resulting in 10.5 mJ/pulse after compression while amplified fluorescence is kept below 1%. We employ grating-based stretching and compression in combination with an LCD phase-shaper, allowing compression close to the Fourier limit of 9.3 fs.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Brabec and F. Krausz, �??Intense few-cycle laser fields: Frontiers of nonlinear optics,�?? Rev. Mod. Phys. 72, 545-591 (2000).
    [CrossRef]
  2. M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, �??Attosecond metrology,�?? Nature (London) 414, 509-513 (2001).
    [CrossRef]
  3. K.W.D. Ledingham, P. McKenna, R.P. Singhal, �??Applications for nuclear phenomena generated by ultra-intense lasers,�?? Science 300, 1107-1111 (2003).
    [CrossRef] [PubMed]
  4. M.D. Perry, D. Pennington, B.C. Stuart, G. Tietbohl, J.A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H.T. Powell, M. Vergino, V. Yanovsky, �??Petawatt laser pulses,�?? Opt. Lett. 24, 160-162 (1999).
    [CrossRef]
  5. Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, Y. Izawa, �??Prepulse-free petawatt laser for a fast ignitor,�?? IEEE J. Quant. Elect. 40, 281-293 (2004).
    [CrossRef]
  6. C.N. Danson, P.A. Brummit, R.J. Clarke, J.L. Collier, G. Fell, A.J. Frackiewicz, S. Hancock, S. Hawkes, C. Hernandez-Gomez, P. Holligan, M.H.R. Hutchinson, A. Kidd, W.J. Lester, I.O. Musgrave, D. Neely, D.R. Neville, P.A. Norreys, D.A. Pepler, C.J. Reason,W. Shaikh, T.B.Winstone, R.W.W.Wyatt, B.E.Wyborn, �??Vulcan Petawatt - an ultra-high-intensity interaction facility,�?? Nucl. Fusion 44, S239-S249 (2004).
    [CrossRef]
  7. M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, H. Kiriyama, �??0.85-PW, 33-fs Ti:Sapphire laser,�?? Opt. Lett. 28, 1594-1596 (2003).
    [CrossRef] [PubMed]
  8. A. Baltuška, T. Fuji and T. Kobayashi, �??Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,�?? Opt. Lett. 27, 306-308 (2002).
    [CrossRef]
  9. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, O.Svelto, �??Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,�?? Opt. Lett. 28, 1987-1989 (2003).
    [CrossRef] [PubMed]
  10. S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, K. Torizuka, �??Seven-terawatt Ti:sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond X-ray generation,�?? Appl. Phys. B 76, 497-503 (2003).
    [CrossRef]
  11. C.P.J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K.R. Wilson, V.V. Yakovlev, K. Yamakawa, �??Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,�?? Opt. Lett. 21, 668-670 (1996).
    [CrossRef] [PubMed]
  12. V. Bagnoud, F. Salin, �??Amplifying laser pulses to the terawatt level at 1-kilohertz repetition rate,�?? Appl. Phys. B 70, S165-S170 (2000).
    [CrossRef]
  13. M. Pittman, S. Ferré, J.P. Rousseau, L. Notebaert, J.P. Chambaret, G. Chériaux, �??Design and characterization of a near-diffraction-limited 100-TW, 10-Hz high-intensity laser,�?? Appl. Phys. B 74, 529-535 (2002).
    [CrossRef]
  14. J. Seres, A. Müller, E. Seres, K. O�??Keeffe, M. Lenner, R. F. Herzog, D. Kaplan, Ch. Spielmann, F. Krausz �??Sub- 10-fs terawatt-scale Ti:Sapphire laser system,�?? Opt. Lett. 28, 1832-1834 (2003).
    [CrossRef] [PubMed]
  15. A. Dubietis, G. Jonušauskas, A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,�?? Opt. Commun. 88, 437-440 (1992).
    [CrossRef]
  16. I.N. Ross, J.L. Collier, P. Matousek, C.N. Danson, D. Neely, R.M. Allott, D.A. Pepler, C. Hernandez-Gomez, and K. Osvay, �??Generation of terawatt pulses by use of optical parametric chirped pulse amplification,�?? Appl. Opt. 39, 2422-2427 (2000).
    [CrossRef]
  17. X. Yang, Z. Xu, Y. Leng, H. Lu, L. Lin, Z. Zhang, R. Li, W. Zhang, D. Yin and B. Tang, �??Multiterawatt laser system based on optical parametric chirped pulse amplification,�?? Opt. Lett. 27, 1135-1137 (2002).
    [CrossRef]
  18. I.N. Ross, P. Matousek, G.H.C. New and K. Osvay, �??Analysis and optimization of optical parametric chirped pulse amplification,�?? J. Opt. Soc. Am. B 19, 2945-2956 (2002).
    [CrossRef]
  19. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, J. L. Collier, �??The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,�?? Opt. Commun. 144, 125-133 (1997).
    [CrossRef]
  20. X. Yang, Z. Xu, Z. Zhang, Y. Leng, J. Peng, J. Wang, S. Jin, W. Zhang and R. Li, �??Dependence of spectrum on pump-signal angle in BBO-I noncollinear optical-parametric chirped-pulse amplification,�?? Appl. Phys. B 73, 219-222 (2001).
    [CrossRef]
  21. R.Th. Zinkstok, S. Witte, W. Hogervorst, K.S.E. Eikema, �??High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control,�?? Opt. Lett. 30, 78-80 (2005).
    [CrossRef] [PubMed]
  22. N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuška, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, A. Piskarskas, �??Multimillijoule chirped parametric amplification of few-cycle pulses,�?? Opt. Lett. 30, 567-569 (2005).
    [CrossRef] [PubMed]
  23. C. Iaconis, I.A. Walmsley, �??Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,�?? Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  24. A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, F. Krausz, �??Attosecond control of electronic processes by intense light fields,�?? Nature (London) 421, 611-615 (2003).
    [CrossRef]
  25. C.P. Hauri, P. Schlup, G. Arisholm, J. Biegert, U. Keller, �??Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator,�?? Opt. Lett. 29, 1369-1371 (2004).
    [CrossRef] [PubMed]
  26. I. Thomann, E. Gagnon, R.J. Jones, A.S. Sandhu, A. Lytle, R. Anderson, J. Ye, M. Murnane, H. Kapteyn �??Investigation of a grating-based stretcher/compressor for carrier-envelope phase stabilized fs pulses,�?? Optics Express 12, 3493-3499 (2004).
    [CrossRef] [PubMed]
  27. D.M. Gaudiosi, A.L. Lytle, P. Kohl, M.M. Murnane, H.C. Kapteyn, S. Backus, �??11-W average power Ti:sapphire amplifier system using downchirped pulse amplification,�?? Opt. Lett. 29, 2665-2667 (2004).
    [CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (4)

S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, K. Torizuka, �??Seven-terawatt Ti:sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond X-ray generation,�?? Appl. Phys. B 76, 497-503 (2003).
[CrossRef]

V. Bagnoud, F. Salin, �??Amplifying laser pulses to the terawatt level at 1-kilohertz repetition rate,�?? Appl. Phys. B 70, S165-S170 (2000).
[CrossRef]

M. Pittman, S. Ferré, J.P. Rousseau, L. Notebaert, J.P. Chambaret, G. Chériaux, �??Design and characterization of a near-diffraction-limited 100-TW, 10-Hz high-intensity laser,�?? Appl. Phys. B 74, 529-535 (2002).
[CrossRef]

X. Yang, Z. Xu, Z. Zhang, Y. Leng, J. Peng, J. Wang, S. Jin, W. Zhang and R. Li, �??Dependence of spectrum on pump-signal angle in BBO-I noncollinear optical-parametric chirped-pulse amplification,�?? Appl. Phys. B 73, 219-222 (2001).
[CrossRef]

IEEE J. Quant. Elect. (1)

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, Y. Izawa, �??Prepulse-free petawatt laser for a fast ignitor,�?? IEEE J. Quant. Elect. 40, 281-293 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (London) (2)

M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, �??Attosecond metrology,�?? Nature (London) 414, 509-513 (2001).
[CrossRef]

A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, F. Krausz, �??Attosecond control of electronic processes by intense light fields,�?? Nature (London) 421, 611-615 (2003).
[CrossRef]

Nucl. Fusion (1)

C.N. Danson, P.A. Brummit, R.J. Clarke, J.L. Collier, G. Fell, A.J. Frackiewicz, S. Hancock, S. Hawkes, C. Hernandez-Gomez, P. Holligan, M.H.R. Hutchinson, A. Kidd, W.J. Lester, I.O. Musgrave, D. Neely, D.R. Neville, P.A. Norreys, D.A. Pepler, C.J. Reason,W. Shaikh, T.B.Winstone, R.W.W.Wyatt, B.E.Wyborn, �??Vulcan Petawatt - an ultra-high-intensity interaction facility,�?? Nucl. Fusion 44, S239-S249 (2004).
[CrossRef]

Opt. Commun. (2)

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, J. L. Collier, �??The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,�?? Opt. Commun. 144, 125-133 (1997).
[CrossRef]

A. Dubietis, G. Jonušauskas, A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,�?? Opt. Commun. 88, 437-440 (1992).
[CrossRef]

Opt. Lett. (12)

D.M. Gaudiosi, A.L. Lytle, P. Kohl, M.M. Murnane, H.C. Kapteyn, S. Backus, �??11-W average power Ti:sapphire amplifier system using downchirped pulse amplification,�?? Opt. Lett. 29, 2665-2667 (2004).
[CrossRef] [PubMed]

C.P. Hauri, P. Schlup, G. Arisholm, J. Biegert, U. Keller, �??Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator,�?? Opt. Lett. 29, 1369-1371 (2004).
[CrossRef] [PubMed]

R.Th. Zinkstok, S. Witte, W. Hogervorst, K.S.E. Eikema, �??High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control,�?? Opt. Lett. 30, 78-80 (2005).
[CrossRef] [PubMed]

N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuška, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, A. Piskarskas, �??Multimillijoule chirped parametric amplification of few-cycle pulses,�?? Opt. Lett. 30, 567-569 (2005).
[CrossRef] [PubMed]

C. Iaconis, I.A. Walmsley, �??Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,�?? Opt. Lett. 23, 792-794 (1998).
[CrossRef]

X. Yang, Z. Xu, Y. Leng, H. Lu, L. Lin, Z. Zhang, R. Li, W. Zhang, D. Yin and B. Tang, �??Multiterawatt laser system based on optical parametric chirped pulse amplification,�?? Opt. Lett. 27, 1135-1137 (2002).
[CrossRef]

J. Seres, A. Müller, E. Seres, K. O�??Keeffe, M. Lenner, R. F. Herzog, D. Kaplan, Ch. Spielmann, F. Krausz �??Sub- 10-fs terawatt-scale Ti:Sapphire laser system,�?? Opt. Lett. 28, 1832-1834 (2003).
[CrossRef] [PubMed]

C.P.J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K.R. Wilson, V.V. Yakovlev, K. Yamakawa, �??Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,�?? Opt. Lett. 21, 668-670 (1996).
[CrossRef] [PubMed]

M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, H. Kiriyama, �??0.85-PW, 33-fs Ti:Sapphire laser,�?? Opt. Lett. 28, 1594-1596 (2003).
[CrossRef] [PubMed]

A. Baltuška, T. Fuji and T. Kobayashi, �??Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,�?? Opt. Lett. 27, 306-308 (2002).
[CrossRef]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, O.Svelto, �??Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,�?? Opt. Lett. 28, 1987-1989 (2003).
[CrossRef] [PubMed]

M.D. Perry, D. Pennington, B.C. Stuart, G. Tietbohl, J.A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H.T. Powell, M. Vergino, V. Yanovsky, �??Petawatt laser pulses,�?? Opt. Lett. 24, 160-162 (1999).
[CrossRef]

Optics Express (1)

I. Thomann, E. Gagnon, R.J. Jones, A.S. Sandhu, A. Lytle, R. Anderson, J. Ye, M. Murnane, H. Kapteyn �??Investigation of a grating-based stretcher/compressor for carrier-envelope phase stabilized fs pulses,�?? Optics Express 12, 3493-3499 (2004).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, �??Intense few-cycle laser fields: Frontiers of nonlinear optics,�?? Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

Science (1)

K.W.D. Ledingham, P. McKenna, R.P. Singhal, �??Applications for nuclear phenomena generated by ultra-intense lasers,�?? Science 300, 1107-1111 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The terawatt 10 fs NOPCPA setup. Relay imaging is employed from the Nd:YAG amplifier to the SHG crystals, and from there to the OPA-stages (RT, relay imaging telescope; RTVF, relay imaging telescope with vacuum spatial filter). The various parts of the setup are explained in detail in the text. NOPA, noncollinear optical parametric amplifier; FI, Faraday isolator; TFP, thin-film polarizer; QR, quartz rotator; PC, Pockels cell; FR, Faraday rotator. In the two-stage NOPA setup, only reflective optics are used; the lenses drawn represent mirrors.

Fig. 2.
Fig. 2.

Beam profile images of the relay-imaged 140 mJ pump beam at the power amplifier (left) and the 10.5 mJ OPA output beam (right). The latter is slightly cut off on the left due to spatial constraints in setting up the relay imaging, without excluding any important features.

Fig. 3.
Fig. 3.

Left: Spectra of the input seed pulses (black curve), and the OPCPA output pulses after compression (green curve). The slow modulation results from phase-matching effects in the power-amplifier, while the faster modulation is presumably caused by a synchronization artefact of the scanning spectrum analyzer used for this measurement. Dashed black curve: seed spectrum 50 times enlarged for clarity. Red curve: spectral phase of the compressed output pulses measured using SPIDER. The deviation from zero at wavelengths longer than 900 nm is caused by limitations of the shaper, see text. Right: Temporal profile of the compressed output pulse (green curve) and temporal phase (red curve).

Metrics