Abstract

We demonstrate a technique for coupling guiding light into hollow-core optical fibers for atom guiding. Microprisms embedded into a multimode, double-clad hollow fiber, allow light to be coupled into the fiber at multiple locations along the length of the fiber. The technique offers significant advantages over end-pumped configurations.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. K. Teo and G. Raithel, �??Atom reflection in a tapered magnetic guide,�?? Phys. Rev. A 65, 051401 (2002).
    [CrossRef]
  2. J. Denschlag, D. Cassettari, and J. Schmiedmayer, �??Guiding neutral atoms with a wire,�?? Phys. Rev. Lett. 82 2014-2017 (1999).
    [CrossRef]
  3. D. Muller, E. A. Cornell, M. Prevedelli, P. D. D. Schwindt, A. Zozulya, and D. Z. Anderson, �??Waveguide atom beam splitter for laser cooled neutral atoms,�?? Opt. Lett. 25, 1382-1384 (2000).
    [CrossRef]
  4. T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, �??Transport of Bose-Einstein Condensates with Optical Tweezers,�?? Phys. Rev. Lett. 88 020401 (2002).
    [CrossRef] [PubMed]
  5. H. R. Noh and W. Jhe, �??Atom optics with hollow optical systems,�?? Phys. Reports 372, 269-317 (2002).
    [CrossRef]
  6. H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, �??Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,�?? Opt. Commun. 141, 43-47 (1997).
    [CrossRef]
  7. M. V. Subbotin, V. I. Balykin, D. V. Laryushin, and V. S. Letokhov, �??Laser controlled atom waveguide as a source of ultracold atoms,�?? Opt. Commun. 139, 107-116 (1997).
    [CrossRef]
  8. D. Muller, E. A. Cornell, D. Z. Anderson, and E. R. Abraham, �??Guiding laser-cooled atoms in hollow-core fibers,�?? Phys. Rev. A 61, 033411 (2000).
    [CrossRef]
  9. Pilloff HS, �??Enhanced atom guiding in metal-coated, hollow-core optical fibers,�?? Opt. Commun. 143, 25-29 (1997).
    [CrossRef]
  10. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, �??Evanescent-wave guiding of atoms in hollow optical fibers,�?? Phys. Rev. A 53, R648 (1996).
    [CrossRef] [PubMed]
  11. Y. Song, D. Milam, and W. T. Hill, �??Long, narrow all-light atom guide,�?? Opt Lett. 24, 1805-1807 (1999).
    [CrossRef]
  12. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, �??Low-Velocity Intense Source of Atoms from a Magneto-optical Trap,�?? Phys. Rev. Lett. 77, 3331-3334 (1996).
    [CrossRef] [PubMed]
  13. M. Hautakorpi, A. Shevchenko, and M. Kaivola, �??Spatially smooth evanescent-wave profiles in a multimode hollow optical fiber for atom guiding,�?? Opt. Commun. 237, 103-110 (2004).
    [CrossRef]
  14. J. P. Koplow, S. W. Moore, and D. A. V. Kliner, �??A new method for side-pumping of double-clad fiber sources,�?? IEEE J. Quantum Electron. 39, 529-540 (2003).
    [CrossRef]

IEEE J. Quantum Electron. (1)

J. P. Koplow, S. W. Moore, and D. A. V. Kliner, �??A new method for side-pumping of double-clad fiber sources,�?? IEEE J. Quantum Electron. 39, 529-540 (2003).
[CrossRef]

Opt Lett. (1)

Y. Song, D. Milam, and W. T. Hill, �??Long, narrow all-light atom guide,�?? Opt Lett. 24, 1805-1807 (1999).
[CrossRef]

Opt. Commun (1)

M. Hautakorpi, A. Shevchenko, and M. Kaivola, �??Spatially smooth evanescent-wave profiles in a multimode hollow optical fiber for atom guiding,�?? Opt. Commun. 237, 103-110 (2004).
[CrossRef]

Opt. Commun. (3)

Pilloff HS, �??Enhanced atom guiding in metal-coated, hollow-core optical fibers,�?? Opt. Commun. 143, 25-29 (1997).
[CrossRef]

H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, �??Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,�?? Opt. Commun. 141, 43-47 (1997).
[CrossRef]

M. V. Subbotin, V. I. Balykin, D. V. Laryushin, and V. S. Letokhov, �??Laser controlled atom waveguide as a source of ultracold atoms,�?? Opt. Commun. 139, 107-116 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Reports (1)

H. R. Noh and W. Jhe, �??Atom optics with hollow optical systems,�?? Phys. Reports 372, 269-317 (2002).
[CrossRef]

Phys. Rev. A (3)

D. Muller, E. A. Cornell, D. Z. Anderson, and E. R. Abraham, �??Guiding laser-cooled atoms in hollow-core fibers,�?? Phys. Rev. A 61, 033411 (2000).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, �??Evanescent-wave guiding of atoms in hollow optical fibers,�?? Phys. Rev. A 53, R648 (1996).
[CrossRef] [PubMed]

B. K. Teo and G. Raithel, �??Atom reflection in a tapered magnetic guide,�?? Phys. Rev. A 65, 051401 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

J. Denschlag, D. Cassettari, and J. Schmiedmayer, �??Guiding neutral atoms with a wire,�?? Phys. Rev. Lett. 82 2014-2017 (1999).
[CrossRef]

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, �??Low-Velocity Intense Source of Atoms from a Magneto-optical Trap,�?? Phys. Rev. Lett. 77, 3331-3334 (1996).
[CrossRef] [PubMed]

T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Gorlitz, S. Gupta, D. E. Pritchard, and W. Ketterle, �??Transport of Bose-Einstein Condensates with Optical Tweezers,�?? Phys. Rev. Lett. 88 020401 (2002).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: GIF (1534 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of side-illuminated hollow core optical fiber. a) A 3-dB fiber splitter couples light through the side of a HCF by microprisms inserted in the HCF. The air/vacuum core is surrounded by a light-guiding annulus (dark blue). The larger annulus (light blue) is a lower index cladding; a polyamide coating (brown) protects the fiber. Light delivery fibers (orange) are epoxied to microprisms (gray) that reflect light by total internal reflection at an air (white triangles) interface.

Fig. 2.
Fig. 2.

a) Image of the microprism inserted into a notch in the HCF. The microprism is also hollow and reflects light through total internal reflection. To prevent contamination that would compromise the TIR, the ends of the microprism are fused and sealed. The diameter of the HCF is 300 microns. b) Final prototype coupler with two light delivery fibers epoxied to HCF.

Fig. 3.
Fig. 3.

Intensity pattern at end of HCF without (top left) and with (top right) dithering of the modes in the delivery fiber. A radial slice of the intensity in each case is also shown (bottom). The plots are independently normalized.

Fig. 4.
Fig. 4.

Cross-sectional intensity profiles as a function of distance z from the microprism in the ray-casting regime. a) Z=1 mm; b) 4 mm; c) 10 mm. The rays in this simulation emanated uniformly from a circle with a diameter half the wall thickness (1.0 Mb).

Metrics