Abstract

We show that nonlinear phase shifts and third-order dispersion can compensate each other in short-pulse fiber amplifiers. This compensation can be exploited in any implementation of chirped-pulse amplification, with stretching and compression accomplished with diffraction gratings, single-mode fiber, microstructure fiber, fiber Bragg gratings, etc. In particular, we consider chirped-pulse fiber amplifiers at wavelengths for which the fiber dispersion is normal. The nonlinear phase shift accumulated in the amplifier can be compensated by the third-order dispersion of the combination of a fiber stretcher and grating compressor. A numerical model is used to predict the compensation, and experimental results that exhibit the main features of the calculations are presented. In the presence of third-order dispersion, an optimal nonlinear phase shift reduces the pulse duration, and enhances the peak power and pulse contrast compared to the pulse produced in linear propagation. Contrary to common belief, fiber stretchers can perform as well or better than grating stretchers in fiber amplifiers, while offering the major practical advantages of a waveguide medium.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics 3rd (Academic, San Diego, California, 2001).
  2. D. Strickland and G. Mourou, �??Compression of amplified chirped optical pulses,�?? Opt. Commun. 56, 219-221 (1985).
    [CrossRef]
  3. M. Pessot, P. Maine and G. Mourou, �??1000 times expansion/compression of optical pulses for chirped pulse amplification,�?? Opt. Commun. 62, 419-421 (1987).
    [CrossRef]
  4. O. E. Martinez, �??Design of high-power ultrashort pulse amplifiers by expansion and recompression,�?? IEEE J. Quantum. Electron. 23, 1385-1387 (1987).
    [CrossRef]
  5. M. D. Perry, T. Ditmire, and B. C. Stuart, �??Self-phase modulation in chirped pulse amplifiers,�?? Opt. Lett. 19, 2149-2151 (1994).
    [CrossRef] [PubMed]
  6. A. Braun, S. Kane and T. Norris, �??Compensation of self-phase modulation in chirped-pulse amplification laser system,�?? Opt. Lett. 22, 615-617 (1997)
    [CrossRef] [PubMed]
  7. O. E. Martinez, �??3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in the 1.3-1.6 µm region,�?? IEEE J. Quantum Electron. 23, 59-64 (1987).
    [CrossRef]
  8. S. Kane and J. Squier, �??Grating compensation of third-order material dispersion in the normal-dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,�?? IEEE J. Quantum Electron. 31, 2052-2058 (1995).
    [CrossRef]
  9. For a recent example, see G. Imeshev, I. Hartl, and M. E. Fermann, �??Chirped pulse amplification with a nonlinearly chirped fiber Bragg grating matched to the Treacy compressor,�?? Opt. Lett. 29, 679-681, (2004). See also references therein.
    [CrossRef] [PubMed]
  10. J. Limpert, A. Liem, T. Schreiber, M. Reich, H. Zellmer, A. Tunnerman, �??High-performance ultrafast fiber laser systems,�?? in Fiber Lasers: Technology, Systems, and Applications, ed. L. N. Durvasula, Proceedings of SPIE vol. 5335 (SPIE, Bellingham, WA, 2004), pp. 245-252.
  11. M. E. Fermann, A.Galvanauskas, and M. Hofer, �??Ultrafast pulse sources based on multi-mode optical fibers,�?? Appl. Phys. B 70, 1, (2000).
    [CrossRef]
  12. Z. Liu, L. Shah, I. Hartl, G. C. Cho and M. E. Fermann, "The Cubicon Amplifier", oral presentation at Photonics West 2005, Conference 5709 - Fiber Lasers II: Technology, Systems, and Applications, late breaking developments, January 24, 2005.
  13. H. Lim, F. �?. Ilday, and F. W. Wise "Generation of 2 nJ pulses from a femtosecond Yb fiber laser," Opt. Lett. 28, 660-662 (2003).
    [CrossRef] [PubMed]
  14. H. Lim, J. Buckley, and F. W. Wise, �??Wavelength tunability of femtosecond Yb fiber lasers,�?? Conference on Lasers and Electro-Optics (Optical Society of America, San Francisco, Calif., 2004), presentation CThK3.

Appl. Phys. B

M. E. Fermann, A.Galvanauskas, and M. Hofer, �??Ultrafast pulse sources based on multi-mode optical fibers,�?? Appl. Phys. B 70, 1, (2000).
[CrossRef]

CLEO 2004

H. Lim, J. Buckley, and F. W. Wise, �??Wavelength tunability of femtosecond Yb fiber lasers,�?? Conference on Lasers and Electro-Optics (Optical Society of America, San Francisco, Calif., 2004), presentation CThK3.

IEEE J. Quantum Electron.

O. E. Martinez, �??3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in the 1.3-1.6 µm region,�?? IEEE J. Quantum Electron. 23, 59-64 (1987).
[CrossRef]

S. Kane and J. Squier, �??Grating compensation of third-order material dispersion in the normal-dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,�?? IEEE J. Quantum Electron. 31, 2052-2058 (1995).
[CrossRef]

IEEE J. Quantum. Electron.

O. E. Martinez, �??Design of high-power ultrashort pulse amplifiers by expansion and recompression,�?? IEEE J. Quantum. Electron. 23, 1385-1387 (1987).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, �??Compression of amplified chirped optical pulses,�?? Opt. Commun. 56, 219-221 (1985).
[CrossRef]

M. Pessot, P. Maine and G. Mourou, �??1000 times expansion/compression of optical pulses for chirped pulse amplification,�?? Opt. Commun. 62, 419-421 (1987).
[CrossRef]

Opt. Lett.

Photonics West 2005, Conf. 5709

Z. Liu, L. Shah, I. Hartl, G. C. Cho and M. E. Fermann, "The Cubicon Amplifier", oral presentation at Photonics West 2005, Conference 5709 - Fiber Lasers II: Technology, Systems, and Applications, late breaking developments, January 24, 2005.

Proc. SPIE

J. Limpert, A. Liem, T. Schreiber, M. Reich, H. Zellmer, A. Tunnerman, �??High-performance ultrafast fiber laser systems,�?? in Fiber Lasers: Technology, Systems, and Applications, ed. L. N. Durvasula, Proceedings of SPIE vol. 5335 (SPIE, Bellingham, WA, 2004), pp. 245-252.

Other

G. P. Agrawal, Nonlinear Fiber Optics 3rd (Academic, San Diego, California, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Illustration of compensation of nonlinearity by TOD. (a) Pulses in time domain for the indicated values of ΦNL (b) Phase spectra for the same values of ΦNL .

Fig. 2.
Fig. 2.

Intensity profiles (a, c, e) and autocorrelation envelopes (b, d, f) obtained from numerical simulations. (a) and (b): fiber stretcher, ΦNL=0.4π. (c) and (d): fiber stretcher, ΦNL=1.9π. (e) and (f) grating stretcher, ΦNL=1.9π. Parameters used in the simulations: nonlinear coefficient γ=4.3 kW-1m-1; GVD coefficient β2 =230 fs2/cm and TOD coefficient β3 =254 fs3/cm. For the grating-pair compressor, β2 =-1.2×105 fs2/cm and β3 =4.5×105fs3/cm.

Fig. 3.
Fig. 3.

(a) Variation of relative peak power with ΦNL for CPA with grating (square symbols), and 100-m fiber (round symbols) stretchers. The pulse is stretched to ~46 ps in each case. The inset shows the variation of the pulse duration with ΦNL . (b) Same as a) but with 400-m stretcher, which stretches to ~140 ps. The lines are only to guide the eye.

Fig. 4.
Fig. 4.

Schematic of the experimental setup.

Fig. 5.
Fig. 5.

Autocorrelations of amplified and dechirped pulses with (a) ΦNL=0.4π, (b) ΦNL =1.8π, and (c) ΦNL =2.1π. The corresponding pulse duration is shown in each panel.

Fig. 6.
Fig. 6.

Autocorrelations of amplified and dechirped pulses with (a) ΦNL =0.2π (8 nJ pulse energy), (b) ΦNL =15π (0.8 µJ pulse energy). The corresponding pulse duration is shown in each panel.

Metrics