Abstract

We report a modified technique for the fabrication of zinc-diffused channel waveguides using z-cut electric-field periodically poled LiNbO3. Unlike previous work, the diffusion was carried out using metallic zinc at atmospheric pressure. By optimizing the thermal diffusion parameters, channel waveguides that preserve the existing periodically poled domain structures, support both TE and TM modes, and enhance photorefractive damage resistance were obtained. Nonlinear characterisation of the channel waveguides was investigated via second harmonic generation of a 1552nm laser with a maximum conversion efficiency of 59%W-1cm-2 at 14.6°C. Using a pulsed source a second harmonic conversion efficiency of 81% was achieved.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. M. Glass, �??Photorefractive Effect,�?? Opt. Eng. 17, 470-479 (1978).
  2. G. A. Magel, M. M. Fejer, and R. L. Byer, �??Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,�?? Appl. Phys. Lett. 56, 108-110 (1990).
    [CrossRef]
  3. Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, �??Reverse proton exchange for buried waveguides in LiNbO3,�?? J. Opt. Soc. Am. A 15, 1838-1842 (1998).
    [CrossRef]
  4. M. L. Bortz, L. A. Eyres, and M. M. Fejer, �??Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,�?? App. Phys. Lett. 62, 2012-2014 (1993).
    [CrossRef]
  5. M. H. Chou, I. Brener, M.M. Fejer, E. E. Chaban and S. B. Christman, �??1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,�?? IEEE Photon. Technol. Lett. 11, 653-655 (1999).
    [CrossRef]
  6. P. J. Chandler, L. Zhang, and P. D. Townsend, �??Double wave-guide in LiNbO3 by ion-implantation,�?? Appl. Phys. Lett. 55, 1710-1712 (1989).
    [CrossRef]
  7. J. Amin, V.Pruneri, J. Webjörn, P. St. J. Russell, D.C. Hanna, J. S. Wilkinson, �??Blue light generation in a periodically poled Ti: Lithium Niobate channel waveguide,�?? Opt. Commun. 135, 41-44 (1997).
    [CrossRef]
  8. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, W. Sohler, �??Efficient Cascaded Difference Frequency Conversion in Periodically Poled Ti: Lithium Niobate Waveguides using Pulsed and CW Pumping,�?? Appl. Phys. B 73, 501-504 (2001).
    [CrossRef]
  9. W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, �??Fabrication, Characterization and Index Profile Modeling of High-Damage Resistance Zn-Diffused Waveguide in Congruent and MgO: Lithium Niobate,�?? J. Lightwave Technol. 10, 1238-1246 (1992).
    [CrossRef]
  10. Herreros and G. Lifante, �??LiNbO3 Optical Waveguides by Zn diffusion from Vapor Phase,�?? Appl. Phys. Lett. 66, 1449-1451 (1995).
    [CrossRef]
  11. R. C. Twu, C. C. Huang, and W. S. Wang, �??Zn Indiffusion Waveguide Polarizer on Y-cut LiNbO3 at 1.32-µm Wavelength,�?? IEEE Photon. Technol. Lett. 12, 161-163 (2000).
    [CrossRef]
  12. T. Suhara, T. Fujieda, M. Fujimura and H. Nishihara, �??Fabrication Zn: Lithium Niobate Waveguides by Diffusing ZnO in Low Pressure Atmosphere,�?? Jpn. J. Appl. Phys. 39, L864-865 (2000).
    [CrossRef]
  13. R. Nevado, E. Cantelar, G. Lifante and F. Cusso, �??Preservation of Periodically Poled Structures in Zn-Diffused Lithium Niobate Waveguides,�?? Jpn. J. Appl. Phys. 39, L488-L489 (2000).
    [CrossRef]
  14. M. Fujimura, H. Ishizuki, T. Suhara and H. Nishihara, �??Quasi-phasematched waveguide conversion in Zn-diffused LiNbO3 waveguide,�?? in Proceedings of Conference Lasers and Electro - Optics (CLEO/PR'01), ME1-5, Tech. Digest vol. I, pp. I96-97, Makuhari, July 15-19, (2001).
  15. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, M. M. Fejer, �??Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,�?? Opt. Lett. 27, 43-45 (2002).
    [CrossRef]
  16. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, D. F. Welch, �??Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,�?? IEEE J. Quantum. Electron. 30, 2953-2960 (1994).
    [CrossRef]
  17. J. C. Campbell, �??Coupling of fibers to Ti-diffused LiNbO3 waveguides by butt-joining,�?? Appl. Opt. 12, 2037-2039 (1979).
    [CrossRef]

App. Phys. Lett.

M. L. Bortz, L. A. Eyres, and M. M. Fejer, �??Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,�?? App. Phys. Lett. 62, 2012-2014 (1993).
[CrossRef]

Appl. Opt.

J. C. Campbell, �??Coupling of fibers to Ti-diffused LiNbO3 waveguides by butt-joining,�?? Appl. Opt. 12, 2037-2039 (1979).
[CrossRef]

Appl. Phys. B

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, W. Sohler, �??Efficient Cascaded Difference Frequency Conversion in Periodically Poled Ti: Lithium Niobate Waveguides using Pulsed and CW Pumping,�?? Appl. Phys. B 73, 501-504 (2001).
[CrossRef]

Appl. Phys. Lett.

P. J. Chandler, L. Zhang, and P. D. Townsend, �??Double wave-guide in LiNbO3 by ion-implantation,�?? Appl. Phys. Lett. 55, 1710-1712 (1989).
[CrossRef]

G. A. Magel, M. M. Fejer, and R. L. Byer, �??Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,�?? Appl. Phys. Lett. 56, 108-110 (1990).
[CrossRef]

Herreros and G. Lifante, �??LiNbO3 Optical Waveguides by Zn diffusion from Vapor Phase,�?? Appl. Phys. Lett. 66, 1449-1451 (1995).
[CrossRef]

CLEO/PR'01

M. Fujimura, H. Ishizuki, T. Suhara and H. Nishihara, �??Quasi-phasematched waveguide conversion in Zn-diffused LiNbO3 waveguide,�?? in Proceedings of Conference Lasers and Electro - Optics (CLEO/PR'01), ME1-5, Tech. Digest vol. I, pp. I96-97, Makuhari, July 15-19, (2001).

IEEE J. Quantum. Electron.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, D. F. Welch, �??Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,�?? IEEE J. Quantum. Electron. 30, 2953-2960 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

R. C. Twu, C. C. Huang, and W. S. Wang, �??Zn Indiffusion Waveguide Polarizer on Y-cut LiNbO3 at 1.32-µm Wavelength,�?? IEEE Photon. Technol. Lett. 12, 161-163 (2000).
[CrossRef]

M. H. Chou, I. Brener, M.M. Fejer, E. E. Chaban and S. B. Christman, �??1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,�?? IEEE Photon. Technol. Lett. 11, 653-655 (1999).
[CrossRef]

J. Lightwave Technol.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, �??Fabrication, Characterization and Index Profile Modeling of High-Damage Resistance Zn-Diffused Waveguide in Congruent and MgO: Lithium Niobate,�?? J. Lightwave Technol. 10, 1238-1246 (1992).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

T. Suhara, T. Fujieda, M. Fujimura and H. Nishihara, �??Fabrication Zn: Lithium Niobate Waveguides by Diffusing ZnO in Low Pressure Atmosphere,�?? Jpn. J. Appl. Phys. 39, L864-865 (2000).
[CrossRef]

R. Nevado, E. Cantelar, G. Lifante and F. Cusso, �??Preservation of Periodically Poled Structures in Zn-Diffused Lithium Niobate Waveguides,�?? Jpn. J. Appl. Phys. 39, L488-L489 (2000).
[CrossRef]

Opt. Commun.

J. Amin, V.Pruneri, J. Webjörn, P. St. J. Russell, D.C. Hanna, J. S. Wilkinson, �??Blue light generation in a periodically poled Ti: Lithium Niobate channel waveguide,�?? Opt. Commun. 135, 41-44 (1997).
[CrossRef]

Opt. Eng.

A. M. Glass, �??Photorefractive Effect,�?? Opt. Eng. 17, 470-479 (1978).

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A schematic representation of the zinc diffusion process in PPLN.

Fig. 2.
Fig. 2.

A photograph of a 6µm wide zinc diffused waveguide (the dark horizontal stripe) in 10µm period PPLN after HF etching and the simulated mode profile of the SHG. As shown, the domain structure is preserved during the thermal indiffusion process.

Fig. 3.
Fig. 3.

A graph of SHG power versus QPM temperature for the first three supported modes of an 18.05µm period zinc-diffused PPLN waveguide.

Fig. 4.
Fig. 4.

A graph of SHG power versus pump power for an 18.05µm period zinc-diffused PPLN waveguide. The solid line represents the best quadratic fit.

Fig. 5.
Fig. 5.

SHG power vs. QPM temperature for PPLN waveguide (period=18.05µm) under high nonlinear drive conditions, the solid line corresponds to a sinc-square function

Tables (1)

Tables Icon

Table 1. The propagation loss of zinc indiffused waveguide

Metrics