Abstract

Detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The purpose of this paper is to develop an algorithm that determines the reduced scattering coefficient (µs) of tissues from a single optical reflectance spectrum measured with a small source-detector separation. A qualitative relationship between µs and optical reflectance was developed using both Monte Carlo simulations and empirical tissue calibrations for each of two fiber optic probes with 400-µm and 100-µm fibers. Optical reflectance measurements, using a standard frequency-domain oximeter, were performed to validate the calculated µs values. The algorithm was useful for determining µs values of in vivo human fingers and rat brain tissues.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H.R. Eggert and V. Blazek, �??Optical Properties of Human Brain Tissue, Meninges, and Brain Tumors in the Spectral Range of 200 to 900 nm,�?? Neurosurg. 21, 459-464 (1987).
    [CrossRef]
  2. M. Johns, C.A. Giller and H. Liu, �??Computational and In Vivo Investigation of Optical Reflectance from Human Brain to Assist Neurosurgery,�?? J. Biomed. Opt. 3, 437-445 (1998).
    [CrossRef]
  3. G. Zonios, L.T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam and M.S. Feld, �??Diffuse Reflectance Spectroscopy of Human Adenomatous Colon Polyps In Vivo,�?? Appl. Opt. 38, 6628-6637 (1999).
    [CrossRef]
  4. J.R. Mourant, I.J. Bigio, J. Boyer, T.M. Johnson, J. Lacey, A.G. Bohorhoush and M. Mellow, �??Elastic Scattering Spectroscopy as a Diagnostic Tool for Differentiating Pathologies in the Gastrointestinal Tract: Preliminary Testing,�?? J. Biomed. Opt. 1, 192-199 (1996).
    [CrossRef]
  5. A.M.K. Nilsson, C. Sturesson, D.L. Liu and S. Andersson-Engels, �??Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,�?? Appl. Opt. 37, 1256-1267 (1998).
    [CrossRef]
  6. J.S. Dam, T. Dalgaard, P.E. Fabricius and S. Andersson-Engels, �??Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,�?? Appl. Opt. 39, 1202-1209 (2000).
    [CrossRef]
  7. A.M.K. Nilsson, R. Berg and S. Andersson-Engels, �??Measurements of the optical properties of tissue in conjunction with photodynamic therapy,�?? Appl. Opt. 34, 4609-4619 (1995).
    [CrossRef] [PubMed]
  8. S.-P. Lin, L. Wang, S.L. Jacques, and F.K. Tittel, �??Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,�?? Appl. Opt. 36, 136-143 (1997).
    [CrossRef] [PubMed]
  9. F.Bevilacqua, D.Piguet,P. marguet, J.D. Gross, B.J. Tromberg, and C. Depeursinge, �??In vivo local determination of tissue optical properties : applications to human brain,�?? Appl. Opt. 38, 4939-4950 (1999).
    [CrossRef]
  10. A. Amelink, A.P. van den Heuvel, W.J. de Wolf, D.J. Robinson, and H.J. Sterenborg, �??Monitoring PDT by means of superficial reflectance spectroscopy,�?? J. Photochem. Photobiol. B 79, 243-251 (2005).
    [CrossRef] [PubMed]
  11. C.A. Giller, H. Liu, P. P. Gurnani, S. Victor, U. Yazdani, and D. C. German, �??Validation of a Near-Infrared Probe for Detection of Thin Intracranial White Matter Structures,�?? J. Neurosurg. 98, 1299-1306 (2003).
    [CrossRef] [PubMed]
  12. C.A. Giller, M. Johns and H. Liu, �??Use of an intracranial near-infrared probe for localization during stereotactic surgery for movement disorders,�?? J. Neurosurg. 93, 498-505 (2000).
    [CrossRef] [PubMed]
  13. F. Bevilacqua and C. Depeursinge, �??Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,�?? J. Opt. Soc. Am. 16, 2935-2945 (1999).
    [CrossRef]
  14. J. S. Dam, C. B. Pedersen, T Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, �??Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,�?? Appl. Opt. 40, 1155-1164 (2001).
    [CrossRef]
  15. L.H. Wang, S.L. Jacques, and L-Q Zheng, �??MCML-Monte Carlo modeling of photon transport in multi-layered tissues,�?? Comp. Meth. Prog. Biomed. 47, 131-146 (1995).
    [CrossRef]
  16. L.H. Wang, S.L. Jacques, and L-Q Zheng, �??CONV-Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,�?? Comp. Meth. Prog. Biomed. 54, 141-150 (1997).
    [CrossRef]
  17. <a href="http://oilab.tamu.edu/mc.html">http://oilab.tamu.edu/mc.html</a>.
  18. A. Kienle, L. Lilge, M.S. Patterson, R. HIbst, R. Steiner and B.C. Wilson, �??Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,�?? Appl. Opt. 35, 2304-2314 (1996).
    [CrossRef] [PubMed]
  19. F.A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic Press, San Diego, 1990), p.62.
  20. W-F Cheong, S.A. Prahl and A.J. Welch, �??A Review of the Optical Properties of Biological Tissues,�?? IEEE J. of Quan. Elec. 26, 2166-2185 (1990).
    [CrossRef]
  21. P. van der Zee, M. Essenpreis, and D.T. Delpy, �??Optical properties of brain tissue,�?? Proc. SPIE 1888, 454-465, (1993).
    [CrossRef]
  22. P. Gurnani, �??Near Infrared Spectroscopic Measurement of Human and Animal Brain Structures,�?? Master Thesis, The University of Texas at Arlington, Arlington, TX, May, 2003.
  23. <a href="http://www.iss.com/Products/oxiplex.html">http://www.iss.com/Products/oxiplex.html</a>.
  24. Z. Qian, S. Victor, Y. Gu, C.A. Giller, and H. Liu, �?? �??Look-Ahead Distance�?? of a fiber probe used to assist neurosurgery: phantom and Monte Carlo study,�?? Opt. Express 11 1844-1855, (2003).
    [CrossRef] [PubMed]
  25. M. Johns, C.A. Giller, and H. Liu, �??Determination of hemoglobin saturation in blood-perfused tissues using reflectance spectroscopy with small source-detector separations,�?? Appl. Spectrosc. 55, 1686-1694 (2001).
    [CrossRef]
  26. M. Solonenko, R. Cheung, T.M. Busch, A. Kachur, G.M. Griffin, T. Vulcan, T.C. Zhu, H.W. Wang, S.M. Hahn, and A.G. Yodh, �??In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,�?? Phys. Med. Biol. 47, 857-73 (2002).
    [PubMed]
  27. G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, Academic Press Inc., 4th edition, London, (1998).
  28. M. Johns, �??Optical properties of living tissues determined in vivo using a thin fiber optic probe,�?? Ph.D. Dissertation, The University of Texas at Arlington, Arlington, TX, December, (2003).
  29. A.E. Cerussi, A.J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Bulter, R.F. Holcombe and B.J. Tromberg, �??Sources of Absorption and Scattering Contrast for Near-Infrared Optical Mammography,�?? Acad Radiol. 8, 211-218 (2001).
    [CrossRef] [PubMed]
  30. T. Durduran, R. Choe, J.P. Culver, L. Zubkov, M.J. Holboke, J. Giammarco, B. Chance and A.G. Yodh, �??Bulk optical properties of healthy female breast tissue,�?? Phys. Med. Biol. 47, 2847-2861 (2002).
    [CrossRef] [PubMed]
  31. H. Eggert, V. Blazek, �??Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,�?? Neurosurgery 21, 459-464, (1987).
    [CrossRef] [PubMed]
  32. H. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, G. Thomas, K. Thomas, U. Frank, P. Schulze, R. Schober, �??Optical properties of native and coagulated human brain structures,�?? Proc. SPIE 2970, 492-499 (1997).
    [CrossRef]
  33. H. Shangguan, S.A. Prahl, S.L. Jacques and L.W. Casperson, �??Pressure effects on soft tissues monitored by changes in tissue optical properties,�?? in Laser-Tissue Interaction IX, S.L. Jacques Ed., Proc. SPIE 3254, 366-371 (1998).

Acad Radiol.

A.E. Cerussi, A.J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Bulter, R.F. Holcombe and B.J. Tromberg, �??Sources of Absorption and Scattering Contrast for Near-Infrared Optical Mammography,�?? Acad Radiol. 8, 211-218 (2001).
[CrossRef] [PubMed]

Appl. Opt.

A.M.K. Nilsson, C. Sturesson, D.L. Liu and S. Andersson-Engels, �??Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,�?? Appl. Opt. 37, 1256-1267 (1998).
[CrossRef]

J.S. Dam, T. Dalgaard, P.E. Fabricius and S. Andersson-Engels, �??Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements,�?? Appl. Opt. 39, 1202-1209 (2000).
[CrossRef]

A.M.K. Nilsson, R. Berg and S. Andersson-Engels, �??Measurements of the optical properties of tissue in conjunction with photodynamic therapy,�?? Appl. Opt. 34, 4609-4619 (1995).
[CrossRef] [PubMed]

A. Kienle, L. Lilge, M.S. Patterson, R. HIbst, R. Steiner and B.C. Wilson, �??Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,�?? Appl. Opt. 35, 2304-2314 (1996).
[CrossRef] [PubMed]

S.-P. Lin, L. Wang, S.L. Jacques, and F.K. Tittel, �??Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,�?? Appl. Opt. 36, 136-143 (1997).
[CrossRef] [PubMed]

F.Bevilacqua, D.Piguet,P. marguet, J.D. Gross, B.J. Tromberg, and C. Depeursinge, �??In vivo local determination of tissue optical properties : applications to human brain,�?? Appl. Opt. 38, 4939-4950 (1999).
[CrossRef]

G. Zonios, L.T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam and M.S. Feld, �??Diffuse Reflectance Spectroscopy of Human Adenomatous Colon Polyps In Vivo,�?? Appl. Opt. 38, 6628-6637 (1999).
[CrossRef]

J. S. Dam, C. B. Pedersen, T Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, �??Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,�?? Appl. Opt. 40, 1155-1164 (2001).
[CrossRef]

Appl. Spectrosc.

Comp. Meth. Prog. Biomed.

L.H. Wang, S.L. Jacques, and L-Q Zheng, �??MCML-Monte Carlo modeling of photon transport in multi-layered tissues,�?? Comp. Meth. Prog. Biomed. 47, 131-146 (1995).
[CrossRef]

L.H. Wang, S.L. Jacques, and L-Q Zheng, �??CONV-Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,�?? Comp. Meth. Prog. Biomed. 54, 141-150 (1997).
[CrossRef]

IEEE J. of Quan. Elec.

W-F Cheong, S.A. Prahl and A.J. Welch, �??A Review of the Optical Properties of Biological Tissues,�?? IEEE J. of Quan. Elec. 26, 2166-2185 (1990).
[CrossRef]

J. Biomed. Opt.

J.R. Mourant, I.J. Bigio, J. Boyer, T.M. Johnson, J. Lacey, A.G. Bohorhoush and M. Mellow, �??Elastic Scattering Spectroscopy as a Diagnostic Tool for Differentiating Pathologies in the Gastrointestinal Tract: Preliminary Testing,�?? J. Biomed. Opt. 1, 192-199 (1996).
[CrossRef]

M. Johns, C.A. Giller and H. Liu, �??Computational and In Vivo Investigation of Optical Reflectance from Human Brain to Assist Neurosurgery,�?? J. Biomed. Opt. 3, 437-445 (1998).
[CrossRef]

J. Neurosurg.

C.A. Giller, H. Liu, P. P. Gurnani, S. Victor, U. Yazdani, and D. C. German, �??Validation of a Near-Infrared Probe for Detection of Thin Intracranial White Matter Structures,�?? J. Neurosurg. 98, 1299-1306 (2003).
[CrossRef] [PubMed]

C.A. Giller, M. Johns and H. Liu, �??Use of an intracranial near-infrared probe for localization during stereotactic surgery for movement disorders,�?? J. Neurosurg. 93, 498-505 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

F. Bevilacqua and C. Depeursinge, �??Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,�?? J. Opt. Soc. Am. 16, 2935-2945 (1999).
[CrossRef]

J. Photochem. Photobiol. B

A. Amelink, A.P. van den Heuvel, W.J. de Wolf, D.J. Robinson, and H.J. Sterenborg, �??Monitoring PDT by means of superficial reflectance spectroscopy,�?? J. Photochem. Photobiol. B 79, 243-251 (2005).
[CrossRef] [PubMed]

Master Thesis

P. Gurnani, �??Near Infrared Spectroscopic Measurement of Human and Animal Brain Structures,�?? Master Thesis, The University of Texas at Arlington, Arlington, TX, May, 2003.

Neurosurg.

H.R. Eggert and V. Blazek, �??Optical Properties of Human Brain Tissue, Meninges, and Brain Tumors in the Spectral Range of 200 to 900 nm,�?? Neurosurg. 21, 459-464 (1987).
[CrossRef]

Neurosurgery

H. Eggert, V. Blazek, �??Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,�?? Neurosurgery 21, 459-464, (1987).
[CrossRef] [PubMed]

Opt. Express

Ph.D. Dissertation

M. Johns, �??Optical properties of living tissues determined in vivo using a thin fiber optic probe,�?? Ph.D. Dissertation, The University of Texas at Arlington, Arlington, TX, December, (2003).

Phys. Med. Biol.

T. Durduran, R. Choe, J.P. Culver, L. Zubkov, M.J. Holboke, J. Giammarco, B. Chance and A.G. Yodh, �??Bulk optical properties of healthy female breast tissue,�?? Phys. Med. Biol. 47, 2847-2861 (2002).
[CrossRef] [PubMed]

M. Solonenko, R. Cheung, T.M. Busch, A. Kachur, G.M. Griffin, T. Vulcan, T.C. Zhu, H.W. Wang, S.M. Hahn, and A.G. Yodh, �??In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,�?? Phys. Med. Biol. 47, 857-73 (2002).
[PubMed]

Proc. SPIE

P. van der Zee, M. Essenpreis, and D.T. Delpy, �??Optical properties of brain tissue,�?? Proc. SPIE 1888, 454-465, (1993).
[CrossRef]

H. Schwarzmaier, A. Yaroslavsky, I. Yaroslavsky, G. Thomas, K. Thomas, U. Frank, P. Schulze, R. Schober, �??Optical properties of native and coagulated human brain structures,�?? Proc. SPIE 2970, 492-499 (1997).
[CrossRef]

H. Shangguan, S.A. Prahl, S.L. Jacques and L.W. Casperson, �??Pressure effects on soft tissues monitored by changes in tissue optical properties,�?? in Laser-Tissue Interaction IX, S.L. Jacques Ed., Proc. SPIE 3254, 366-371 (1998).

Other

<a href="http://www.iss.com/Products/oxiplex.html">http://www.iss.com/Products/oxiplex.html</a>.

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates, Academic Press Inc., 4th edition, London, (1998).

<a href="http://oilab.tamu.edu/mc.html">http://oilab.tamu.edu/mc.html</a>.

F.A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic Press, San Diego, 1990), p.62.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Simulated relationship between reflectance and the reduced scattering coefficient at varying µa values of 0.01 cm-1 (solid diamond), 0.1 cm-1 (open square), 0.25 cm-1 (solid triangle), and 0.5 cm-1 (cross), with the source-detector separation fixed at 400 microns. The unit for reflectance is the number of photons/cm2.

Fig. 2. (a).
Fig. 2. (a).

Overall intensity factor, a0–400 , versus measured reflectance, R m-400, at 750 nm (open blue circles) and at 830 nm (filled red circles) for the 400-µm probe. An average a 0–400 value is shown as the solid green line while the solid black curve is a quadratic fit for the data.

Fig. 2. (b).
Fig. 2. (b).

Overall intensity factor, a 0–100, versus measured reflectance, R m-100, at 750 nm (open blue circles) and 830 nm (filled red triangles) for the 100-µm probe. An average a 0–400 value is shown as the solid green line, while the solid black curve is a quadratic fit for the data.

Fig. 3.
Fig. 3.

(a). The schematic cross section of the 400-µm fiber probe. 3(b). Experimental setup for the in vivo reflectance measurements of the human middle finger. The particular probe shown above is just for the demonstration purpose and equivalent to the 400-µm probe, which was used for the determination of µs ’ values of human fingers. Also, the broadband light source and CCD spectrometer are shown, as labeled.

Fig. 4.
Fig. 4.

Linear relationships between 1) the Intralipid concentration and the reflectance (red circles) and 2) the Intralipid concentration and the µs ’ values (blue solid squares) obtained from the ISS oximeter. The data are fitted with linear relationships for the reflectance (red line) and the µs ’ (blue line), respectively, for the 400-µm probe. Specifically, the linear relationships are R m-400=0.310×[Intralipid concentration]+0.009 and µ s ’=10.094× [Intralipid concentration] + 0.433 in cm-1.

Fig. 5.
Fig. 5.

Error comparison between expected µs ’ (ISS) and calculated µs’ (cal) values, using the constant a 0–400 (=0.065±0.01) (filled red squares) and the polynomial a 0–400, i.e., Eq. (5) (open blue circles). All of the data points were based on five readings per location per Intralipid concentration. The data at 750 nm were used for this comparison.

Fig. 6.
Fig. 6.

Linear relationships between the reduced light scattering coefficient (µs’) and the reflectance measured without ink (red diamonds) and with ink (blue circles). The absorption coefficients of Intralipid solutions without ink and with ink are 0.04 and 0.4 cm-1, respectively. The experiment was taken with the 400-µm probe, and the different values of µs’ were obtained by varying the Intralipid concentration. The data at 750 nm were used for this comparison.

Fig, 7(a).
Fig, 7(a).

Error comparison between expected µs ’ (ISS) and calculated µs ’ (cal) values, using the constant a 0–100 (=0.0034±0.0005) (shown as filled red squares) and the polynomial a 0–100, i.e., equation (7) (shown as open blue circles). The horizontal dashed lines are the mean values of the open-circle and filled-square data points, respectively. To decrease noise due to small a source-detector separation, 4 locations per Intralipid solution were taken for the measurement, and 3 readings per location were used. The data at 750 nm were used for this comparison.

Fig, 7. (b).
Fig, 7. (b).

Error comparison in µs ’ when using a single location measurement (constant a 0–100: filled red squares with the mean value plotted by solid red line; polynomial a 0–100: filled blue circles with the mean value by solid blue line) versus the average of three measurements per location (constant a 0–100: open red squares with the mean value by dashed red line; polynomial a 0–100: open blue circles with the mean value by dashed blue line). The data at 750 nm were used for this comparison.

Fig. 8.
Fig. 8.

Calculated reduced scattering coefficients, µs ’, from living rat brain tissues at 750 nm; the data were obtained using the 400-µm probe.

Fig. 9.
Fig. 9.

Calculated µs ’ values from living rat brain tissues at 750 nm; the data were obtained using the 100-µm probe.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R sim ( λ 0 ) = 0.404 μ s ( λ 0 ) + 0.582 .
R m 400 ( λ 0 ) = a 0 400 R sim 400 ( λ 0 ) = a 0 400 [ 0.404 μ s ( λ 0 ) + 0.582 ] ,
R m 100 ( λ 0 ) = a 0 100 R sim 100 ( λ 0 ) = a 0 100 [ 1.670 μ s ( λ 0 ) 1.544 ] .
a 0 400 = R m 400 ( λ 0 ) 0.404 * μ s ( λ 0 ) + 0.5819 .
a 0 400 ( λ 0 ) = 0.0458 R m 400 ( λ 0 ) 2 + 0.0808 R m 400 ( λ 0 ) + 0.0407 ,
μ s ( λ 0 ) = R m 400 ( λ 0 ) 0.5819 a 0 400 ( λ 0 ) 0.404 a 0 400 ( λ 0 ) ,
μ s ( λ 0 ) = R m 400 ( λ 0 ) 0.5819 [ 0.065 ] 0.404 [ 0.065 ] ,
μ s ( λ 0 ) = R m 400 ( λ 0 ) 0.5819 [ 0.0458 R m 400 ( λ 0 ) 2 + 0.0808 R m 400 ( λ 0 ) + 0.0407 ] 0.404 [ 0.0458 R m 400 ( λ 0 ) 2 + 0.0808 R m 400 ( λ 0 ) + 0.0407 ] ,
a 0 100 ( λ 0 ) = 0.0126 R m 100 ( λ 0 ) 2 + 0.0074 R m 100 ( λ 0 ) + 0.0027 .
μ s ( λ 0 ) = R m 100 ( λ 0 ) + 1.5437 a 0 100 ( λ 0 ) 1.6696 a 0 100 ( λ 0 ) ,
μ s ( λ 0 ) = R m 100 ( λ 0 ) + 1.5437 [ 0.0034 ] 1.6696 [ 0.0034 ] ,
μ s ( λ 0 ) = R m 100 ( λ 0 ) + 1.5437 0.0126 R m 100 ( λ 0 ) 2 + 0.0074 R m 100 ( λ 0 ) + 0.0027 1.6696 [ 0.0126 R m 100 ( λ 0 ) 2 + 0.0074 R m 100 ( λ 0 ) + 0.0027 ] ,
Relative error in μ s = μ s ( probe ) μ s ( ISS ) μ s ( ISS ) 100 %

Metrics