Abstract

We show that high efficiency stimulated Raman scattering can be obtained using hollow core photonic crystal fiber with the core filled with a low refractive index nonlinear liquid. This new architecture opens new perspectives in the development of nonlinear functions as any kind of nonlinear liquid media can now be used to implement them, with original properties not accessible with silica core fibers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Eckhardt, R.W. Hellwarth, F.J. McClung, S.E. Schwarz, D. Weiner, E.J. Woodbury. "Stimulated Raman Scattering from organic liquids" Phys. Rev. Lett. 9, 455 (1962)
    [CrossRef]
  2. Y.R. Shen "The principles of nonlinear optics" (John Wiley and Sons, New York, 1984).
  3. E. Desurvire, "Erbium-Doped Fiber Amplifiers, Principle and Applications" (Wiley, New York, 1994).
  4. R.Frey, F. Pradère "Powerful tunable infrared generation by stimulated Raman Scattering" Opt. Commun. 12, 98 (1974)
    [CrossRef]
  5. Kafing Keita, Robert Frey, Philippe Delaye, Daniel Dolfi, Jean-Pierre Huignard, Gérald Roosen "Stimulated Raman amplification of small optically carried microwave signals" Submitted for publication
  6. L.S. Meng, K.S. Repasky, P.A. Roos, J.L. Carlsten "Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser" Opt. Lett. 25 472 (2000).
    [CrossRef]
  7. E.M. Dianov "Advances in Raman fibers" J. Lightwave Technol. 20, 1457 (2002)
    [CrossRef]
  8. V. Finazzi, T. M. Monro, D. J. Richardson "Small-core silica holey fibers: nonlinearity and confinement loss trade-offs" J. Opt. Soc. Am. B20 1427 (2003)
  9. J. Stone "CW Raman fiber amplifier" Appl. Phys. Lett. 26, 163 (1975)
    [CrossRef]
  10. A.R. Chraplyvy, T.J. Bridges, "Infrared generation by means of multiple order stimulated Raman scattering in CCl4 and CbrCl3-filled hollow silica fibers" Opt. Lett. 6, 632 (1981)
    [CrossRef] [PubMed]
  11. Y. Chen, L. Wang, X. Lu, Y. Chen, M. Qiu, "Stimulated Raman scattering and four wave mixing from a mixture of carbon disulfide and phenylethanol in a hollow optical fiber" Opt. Lett. 16, 1469 (1991)
    [CrossRef] [PubMed]
  12. J.H. Yin, S.Q. Gao, Z.W. Li, Y.N. Yu, G.H. Lu, Y.J Tian "Effect of solution concentration on the Raman scattering cross-section of carbon tetrachloride" J. Raman Spectrosc. 35, 1042 (2004)
    [CrossRef]
  13. R. Altkorn, I. Koev, R.P. Van-Duyne, M. Litorja. "Low-loss liquid-core optical fiber for low-refractiveindex liquids: fabrication, characterization, and application in Raman spectroscopy" Applied Optics 36, 8992 (1997).
    [CrossRef]
  14. T.A. Birks,P.J. Roberts, P. S.J. Russell, D.M. Atkin, T.J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures" Electronics Letters, 31, 1941(1995).
    [CrossRef]
  15. R. F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, D.C. Allan �??Single-mode photonic band gap guidance of light in air�?? Science 285, 1537 (1999)
    [CrossRef] [PubMed]
  16. F. Benabid, J.C. Knight, G. Antonopoulos, P.S.J. Russell. "Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber" Science, 298, 399 (2002)
    [CrossRef] [PubMed]
  17. F. Benabid, F. Couny, J. C. Knight, T. A. Birks & P. St J. Russell �??Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres�?? Nature, 434, 488 (2005)
    [CrossRef] [PubMed]
  18. S. O. Konorov, A. B. Fedotov, E. E. Serebryannikov, V. P. Mitrokhin, D. A. Sidorov-Biryukov and A. M. Zheltikov. "Phase-matched coherent anti-Stokes Raman scattering in isolated air-guided modes of hollow photonic-crystal fibers" J. Raman Spectrosc. 36, 129 (2005)
    [CrossRef]
  19. J. Rheims, J.Köser, T. Wriedt, "Refractive-index measurements in the near-IR using an Abbe refractometer" Meas. Sci. Technol. 8 601-605 (1997).
    [CrossRef]
  20. M. Lewis, T. Knudston, �??The spatial growth rate of stimulated raman scattering in ethanol�?? Chemical Physics 55, 73-83 (1981)
    [CrossRef]
  21. M. J. Colles, J.E. Griffiths "Relative and absolute Raman scattering cross sections in liquids" J. Chemical Physics 56, 3384 (1972)
    [CrossRef]
  22. C. Yijiang, A.W. Snyder "Saturation and depletion effect of Raman scattering in optical fibers" J. Lightwave Technol. 7 1109 (1989)
    [CrossRef]
  23. R.H. Stolen, C. Lee, R.K. Jain "Development of the stimulated Raman spectrum in single mode silica fibers" J. Opt. Soc. Am. B1 652 (1984)
    [CrossRef]

Appl. Phys. Lett.

J. Stone "CW Raman fiber amplifier" Appl. Phys. Lett. 26, 163 (1975)
[CrossRef]

Applied Optics

R. Altkorn, I. Koev, R.P. Van-Duyne, M. Litorja. "Low-loss liquid-core optical fiber for low-refractiveindex liquids: fabrication, characterization, and application in Raman spectroscopy" Applied Optics 36, 8992 (1997).
[CrossRef]

Chemical Physics

M. Lewis, T. Knudston, �??The spatial growth rate of stimulated raman scattering in ethanol�?? Chemical Physics 55, 73-83 (1981)
[CrossRef]

Electronics Letters

T.A. Birks,P.J. Roberts, P. S.J. Russell, D.M. Atkin, T.J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures" Electronics Letters, 31, 1941(1995).
[CrossRef]

J. Chemical Physics

M. J. Colles, J.E. Griffiths "Relative and absolute Raman scattering cross sections in liquids" J. Chemical Physics 56, 3384 (1972)
[CrossRef]

J. Lightwave Technol.

C. Yijiang, A.W. Snyder "Saturation and depletion effect of Raman scattering in optical fibers" J. Lightwave Technol. 7 1109 (1989)
[CrossRef]

E.M. Dianov "Advances in Raman fibers" J. Lightwave Technol. 20, 1457 (2002)
[CrossRef]

J. Opt. Soc. Am. B

J. Raman Spectrosc.

J.H. Yin, S.Q. Gao, Z.W. Li, Y.N. Yu, G.H. Lu, Y.J Tian "Effect of solution concentration on the Raman scattering cross-section of carbon tetrachloride" J. Raman Spectrosc. 35, 1042 (2004)
[CrossRef]

S. O. Konorov, A. B. Fedotov, E. E. Serebryannikov, V. P. Mitrokhin, D. A. Sidorov-Biryukov and A. M. Zheltikov. "Phase-matched coherent anti-Stokes Raman scattering in isolated air-guided modes of hollow photonic-crystal fibers" J. Raman Spectrosc. 36, 129 (2005)
[CrossRef]

Meas. Sci. Technol.

J. Rheims, J.Köser, T. Wriedt, "Refractive-index measurements in the near-IR using an Abbe refractometer" Meas. Sci. Technol. 8 601-605 (1997).
[CrossRef]

Nature

F. Benabid, F. Couny, J. C. Knight, T. A. Birks & P. St J. Russell �??Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres�?? Nature, 434, 488 (2005)
[CrossRef] [PubMed]

Opt. Commun.

R.Frey, F. Pradère "Powerful tunable infrared generation by stimulated Raman Scattering" Opt. Commun. 12, 98 (1974)
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

G. Eckhardt, R.W. Hellwarth, F.J. McClung, S.E. Schwarz, D. Weiner, E.J. Woodbury. "Stimulated Raman Scattering from organic liquids" Phys. Rev. Lett. 9, 455 (1962)
[CrossRef]

Science

R. F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, D.C. Allan �??Single-mode photonic band gap guidance of light in air�?? Science 285, 1537 (1999)
[CrossRef] [PubMed]

F. Benabid, J.C. Knight, G. Antonopoulos, P.S.J. Russell. "Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber" Science, 298, 399 (2002)
[CrossRef] [PubMed]

Other

Y.R. Shen "The principles of nonlinear optics" (John Wiley and Sons, New York, 1984).

E. Desurvire, "Erbium-Doped Fiber Amplifiers, Principle and Applications" (Wiley, New York, 1994).

Kafing Keita, Robert Frey, Philippe Delaye, Daniel Dolfi, Jean-Pierre Huignard, Gérald Roosen "Stimulated Raman amplification of small optically carried microwave signals" Submitted for publication

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) SEM image of used fiber, (b) Optical microscope image of the end of the fiber filled with water and illuminated from above. The peripherical holes were closed on the side where liquid was inserted, and the fiber is observed on the cleaved other side. Only the central hole is filled with the liquid.

Fig. 2.
Fig. 2.

Experimental set-up for the measurement of Stimulated Raman Scattering in liquid core photonic crystal fiber.

Fig. 3.
Fig. 3.

Spectrum of first Stokes lines at 630nm. The bold line represents an adjustment with a Lorentzian profile, with the given width.

Fig. 4.
Fig. 4.

Intensity dependence of the transmitted pump, and Stokes lines as a function of the incident pump beam intensity. The insert shows the Stokes intensities on a log scale allowing a precise determination of the threshold.

Fig. 5.
Fig. 5.

Theoretical dependence of the pump and Stokes lines intensities.

Tables (1)

Tables Icon

Table 1. Numerical value of the absorption and refractive index of ethanol used in numerical calculations. The absorption coefficients were measured with a 2 cm tank using a spectrophotometer. The refractive indices were calculated from the Cauchy dispersion formula with the coefficients given in [19]

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d A p dz = α p 2 A p G 0 2 A p A sl + N sl A p 2
d A s 1 dz = α s 1 2 A sl + G 0 2 n p λ p n s 1 λ s 1 ( A p 2 ( A s 1 + N s 1 A p ) A s 1 A s 2 + N s 2 A s 1 2 )
d A s 2 dz = α s 2 2 A s 2 + G 0 2 n p λ p n s 2 λ s 2 A s 1 2 ( A s 2 + N s 2 A s 1 )

Metrics