Abstract

We propose and demonstrate the adoption of the compact disc optical pickup technology for Raman microspectroscopy. We utilize both the focusing and the 2-dimensional lateral scanning capabilities of the optical pickup for implementing a miniaturized microspectroscopy system. The resolution of this pickup-based system is characterized by scanning polystyrene microspheres. We test the completed microspectroscopy system by obtaining Raman images of Adenine microstructures. This system will be particularly useful for table-top biological analyzers and other remote medicine applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Puppels, C. Otto, J. Greve, “Confocal Raman microspectroscopy in biology: applications and future developments,” Trends in Anal. Chem. 10, 249–253 (1991).
    [CrossRef]
  2. T.R. Corle, G. S. Kino, Confocal scanning optical microscopy and related imaging systems, Academic Press, San Diego, CA (1996).
  3. H. Toshiyoshi, G.-D. J. Su, J. LaCosse, M. C. Wu, “A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,” J. Lightwave Technol. 21, 1700–1708 (2003).
    [CrossRef]
  4. S. Kwon, L. P. Lee, “Micromachined transmissive scanning confocal microscope,” Opt. Lett. 29, 706–708 (2004).
    [CrossRef] [PubMed]
  5. F. Quercioli, B Tiribilli, A. Bartoli, “Interferometry with optical pickups,” Opt. Lett. 24, 670–672 (1999).
    [CrossRef]
  6. A. G. J. Tibbe, B. G. de Grooth, J. Greve, C. Rao, G.. J. Dolan, L. W. M. M. Terstappen, “Cell analysis system based on compact disc technology,” Cytometry 47, 173–182 (2002).
    [CrossRef] [PubMed]
  7. J. Benschop, G. van Rosmalen, “Confocal compact scanning optical microscope based on compact disc technology,” Appl. Opt. 30, 1179–1184 (1991).
    [CrossRef] [PubMed]
  8. Y. Lu, G. L. Liu, Jaeyoun Kim, Y. Mejia, L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
    [CrossRef] [PubMed]

2005

Y. Lu, G. L. Liu, Jaeyoun Kim, Y. Mejia, L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

2004

2003

2002

A. G. J. Tibbe, B. G. de Grooth, J. Greve, C. Rao, G.. J. Dolan, L. W. M. M. Terstappen, “Cell analysis system based on compact disc technology,” Cytometry 47, 173–182 (2002).
[CrossRef] [PubMed]

1999

1991

J. Benschop, G. van Rosmalen, “Confocal compact scanning optical microscope based on compact disc technology,” Appl. Opt. 30, 1179–1184 (1991).
[CrossRef] [PubMed]

G. J. Puppels, C. Otto, J. Greve, “Confocal Raman microspectroscopy in biology: applications and future developments,” Trends in Anal. Chem. 10, 249–253 (1991).
[CrossRef]

Bartoli, A.

Benschop, J.

Corle, T.R.

T.R. Corle, G. S. Kino, Confocal scanning optical microscopy and related imaging systems, Academic Press, San Diego, CA (1996).

de Grooth, B. G.

A. G. J. Tibbe, B. G. de Grooth, J. Greve, C. Rao, G.. J. Dolan, L. W. M. M. Terstappen, “Cell analysis system based on compact disc technology,” Cytometry 47, 173–182 (2002).
[CrossRef] [PubMed]

Dolan, G.. J.

A. G. J. Tibbe, B. G. de Grooth, J. Greve, C. Rao, G.. J. Dolan, L. W. M. M. Terstappen, “Cell analysis system based on compact disc technology,” Cytometry 47, 173–182 (2002).
[CrossRef] [PubMed]

Greve, J.

A. G. J. Tibbe, B. G. de Grooth, J. Greve, C. Rao, G.. J. Dolan, L. W. M. M. Terstappen, “Cell analysis system based on compact disc technology,” Cytometry 47, 173–182 (2002).
[CrossRef] [PubMed]

G. J. Puppels, C. Otto, J. Greve, “Confocal Raman microspectroscopy in biology: applications and future developments,” Trends in Anal. Chem. 10, 249–253 (1991).
[CrossRef]

Kim, Jaeyoun

Y. Lu, G. L. Liu, Jaeyoun Kim, Y. Mejia, L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

Kino, G. S.

T.R. Corle, G. S. Kino, Confocal scanning optical microscopy and related imaging systems, Academic Press, San Diego, CA (1996).

Kwon, S.

LaCosse, J.

Lee, L. P.

Y. Lu, G. L. Liu, Jaeyoun Kim, Y. Mejia, L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

S. Kwon, L. P. Lee, “Micromachined transmissive scanning confocal microscope,” Opt. Lett. 29, 706–708 (2004).
[CrossRef] [PubMed]

Liu, G. L.

Y. Lu, G. L. Liu, Jaeyoun Kim, Y. Mejia, L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

Lu, Y.

Y. Lu, G. L. Liu, Jaeyoun Kim, Y. Mejia, L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

Mejia, Y.

Y. Lu, G. L. Liu, Jaeyoun Kim, Y. Mejia, L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

Otto, C.

G. J. Puppels, C. Otto, J. Greve, “Confocal Raman microspectroscopy in biology: applications and future developments,” Trends in Anal. Chem. 10, 249–253 (1991).
[CrossRef]

Puppels, G. J.

G. J. Puppels, C. Otto, J. Greve, “Confocal Raman microspectroscopy in biology: applications and future developments,” Trends in Anal. Chem. 10, 249–253 (1991).
[CrossRef]

Quercioli, F.

Rao, C.

A. G. J. Tibbe, B. G. de Grooth, J. Greve, C. Rao, G.. J. Dolan, L. W. M. M. Terstappen, “Cell analysis system based on compact disc technology,” Cytometry 47, 173–182 (2002).
[CrossRef] [PubMed]

Su, G.-D. J.

Terstappen, L. W. M. M.

A. G. J. Tibbe, B. G. de Grooth, J. Greve, C. Rao, G.. J. Dolan, L. W. M. M. Terstappen, “Cell analysis system based on compact disc technology,” Cytometry 47, 173–182 (2002).
[CrossRef] [PubMed]

Tibbe, A. G. J.

A. G. J. Tibbe, B. G. de Grooth, J. Greve, C. Rao, G.. J. Dolan, L. W. M. M. Terstappen, “Cell analysis system based on compact disc technology,” Cytometry 47, 173–182 (2002).
[CrossRef] [PubMed]

Tiribilli, B

Toshiyoshi, H.

van Rosmalen, G.

Wu, M. C.

Appl. Opt.

Cytometry

A. G. J. Tibbe, B. G. de Grooth, J. Greve, C. Rao, G.. J. Dolan, L. W. M. M. Terstappen, “Cell analysis system based on compact disc technology,” Cytometry 47, 173–182 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol.

Nano Lett.

Y. Lu, G. L. Liu, Jaeyoun Kim, Y. Mejia, L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5, 119–124 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Trends in Anal. Chem.

G. J. Puppels, C. Otto, J. Greve, “Confocal Raman microspectroscopy in biology: applications and future developments,” Trends in Anal. Chem. 10, 249–253 (1991).
[CrossRef]

Other

T.R. Corle, G. S. Kino, Confocal scanning optical microscopy and related imaging systems, Academic Press, San Diego, CA (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic views of (a) the lens-scanning Raman microspectroscopy system (drawn not to scale) (b) the optical pickup utilized for this scanning system (BS: beam splitter, CL: collimation lens, FL: focusing lens, LD: laser diode, LH: lens holder, PM: permanent magnet, QD: quadrant diode, R: reflector, S: wire spring; Dashed: beam path for normal pickup operation, Solid: beam path for scanning operation)

Fig. 2.
Fig. 2.

(a) Schematic illustration of the scanning resolution characterization (b) Visual images of 1-dimensional lateral scanning and (c) Observed change in the intensity of Raman signal at 1008 cm-1 as the actuation voltage is varies from 0 to 20 mV. The error bars indicate the standard deviation obtained from 20 sets of 10 second integration results.

Fig. 3.
Fig. 3.

(a) The obtained Raman spectra from the 1-dimensional scanning of the PDMS (chemical structure shown in the inset) microstructure. The scanning range is 20 µm. A couple of distinct Raman peaks are observed. (b) The peak intensity at 492 cm-1 is plotted as a function of the displacement (open circles). The residual Raman signal that causes the gradual edge response is due to the diverging portion of the excitation beam beyond the focal spot and is consistent with the observation in Fig. 2(c).

Fig. 4.
Fig. 4.

(a) CMOS camera image of the sample area. Brighter areas are solidified Adenine. The dotted box contains the magnified image (Scalebar: 20 µm). The orange circle is the excitation beam focused by the optical pickup. The inner, solid-lined box indicates the area of Adenine spot to be scanned. (b) The 9×8 mosaic Raman image constructed by collecting Raman response at 726 cm-1. Each pixel is a 10 µm×10 µm square. (c) A 50×50 interpolated version of the Raman image. The shape of the Adenine spot is clearly reconstructed.

Metrics