Abstract

As the fiber-to-the-home network construction increased, optical fiber cables are demanded to be easier to handle and require less space. Under this situation, a single mode fiber (SMF) permitting small bending radius is strongly requested. In this paper, we propose and demonstrate a novel type of bending-insensitive single-mode holey fiber that has a doped core and two layers of holes with different air-hole diameters. The fiber has a mode field diameter of 9.3 µm at 1.55 µm and a cutoff wavelength below 1.1 µm, and shows a bending loss of 0.011 dB/turn at 1.55 µm for a bending radius of 5 mm and a low splice loss of 0.08 dB per fusion-splicing to a conventional SMF.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P.St.J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,” in proceedings of Optical Fiber Communication Conference (OFC2001), paper PD5, Anaheim, USA, (2001).
  3. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss,” Opt. Express 9, 681-686 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-681.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-681.</a>
    [CrossRef] [PubMed]
  4. K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett. 15, 1737-1739 (2003).
    [CrossRef]
  5. T. Hasegawa, T. Saitoh, D. Nishioka, E. Sasaoka, and T. Hosoya, “Bending-insensitive single-mode holey fiber with SMF-compatibility for optical wiring applications,” in proceedings of European Conference on Optical Communications (ECOC2003), paper We2.7.3, Rimini, Italy, (2003).
  6. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic Publishers, 2003.
    [CrossRef]
  7. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703-718 (1977).
  8. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21, 4208-4213 (1982).
    [CrossRef] [PubMed]
  9. F.L. Teixeira and W.C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microwave Guided Wave Lett. 8, 223-225 (1998).
    [CrossRef]
  10. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  11. M. Koshiba and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 1313-1315 (2001).
    [CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703-718 (1977).

ECOC 2003 (1)

T. Hasegawa, T. Saitoh, D. Nishioka, E. Sasaoka, and T. Hosoya, “Bending-insensitive single-mode holey fiber with SMF-compatibility for optical wiring applications,” in proceedings of European Conference on Optical Communications (ECOC2003), paper We2.7.3, Rimini, Italy, (2003).

IEEE J. Quantum Elencron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

F.L. Teixeira and W.C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microwave Guided Wave Lett. 8, 223-225 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Koshiba and K. Saitoh, “Numerical verification of degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 1313-1315 (2001).
[CrossRef]

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett. 15, 1737-1739 (2003).
[CrossRef]

OFC 2001 (1)

T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km,” in proceedings of Optical Fiber Communication Conference (OFC2001), paper PD5, Anaheim, USA, (2001).

Opt. Express (1)

Science (1)

P.St.J. Russell, “Photonic crystal fibers,” Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (1)

A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic Publishers, 2003.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic representations of HFs with (a) one layer of air-holes and (b) two layers of air-holes.

Fig. 2.
Fig. 2.

MFD dependence of splice loss, Ls , between the HF and the SMF, where the MFD of the SMF, wSMF , is assumed to be 11.4 µm.

Fig. 3.
Fig. 3.

Curved holey fiber with perfectly patched layer.

Fig. 4.
Fig. 4.

Relation between the MFD and the cutoff wavelength.

Fig. 5.
Fig. 5.

Dependence of the cutoff wavelength on the allowable bending radius.

Fig. 6.
Fig. 6.

Dependence of the cutoff wavelength and the allowable bending radius on air-hole diameter of the second ring.

Fig. 7.
Fig. 7.

Optical field distribution in curved HF with bending radius of 6 mm at 1.55-µm wavelength, where a=3.0 µm, Λ=9.0 µm, d 1/Λ=0.38, and d 2/Λ=0.40.

Fig. 8.
Fig. 8.

Cross sectional view of the fabricated HF.

Fig. 9.
Fig. 9.

Wavelength dependence of effective indices of the fundamental and higher-order modes.

Fig. 10.
Fig. 10.

Dependence of leakage loss of the higher-order mode on the operating wavelength.

Fig. 11.
Fig. 11.

Optical field distributions of (a) the fundamental and (b) higher-order modes at 0.92-µm wavelength with a=2.95 µm, Λ=8.98 µm, d 1/Λ=0.39, and d 2/Λ=0.41.

Fig. 12.
Fig. 12.

Bending loss as a function of bending radius at 1.55 µm.

Fig. 13.
Fig. 13.

Splice loss histogram for fusion splicing between HF and SMF at 1.55 µm.

Tables (1)

Tables Icon

Table 1. Characteristics of the fabricated HF at 1.55 µm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

L s = 20 log 10 2 w SMF w HF w SMF 2 + w HF 2
n eq ( x , y ) = n ( x , y ) ( 1 + x R ) ,
r ˜ = [ x ˜ , y ˜ , z ˜ ] T = [ 0 x S ( x ' ) d x ' , y , z ] T ,
S ( x ) = { 1 for x x PML 1 j α ( x x PML d PML ) 2 for x > x PML ,
x ˜ = { x for x x PML [ 1 j α 3 ( x x PML d PML ) 2 ] ( x x PML ) + x PML for x > x PML
y ˜ = y
z ˜ = z ,
E = = [ S ] 1 E ( r ˜ ) ,
[ S ] = [ 1 S ( x ) 0 0 0 1 0 0 0 1 ] ,
× ( [ S ] 1 × E ¯ ¯ ) k 0 2 n eq 2 ( r ˜ ) [ S ] E ¯ ¯ = 0 ,
[ K ] { E } = β 2 [ M ] { E } ,
L B = 8.686 Im [ β ]

Metrics