Abstract

Disagreements on the Raman gain response of different tellurite-based glasses, measured at different wavelengths, have been recently reported in the literature. In order to resolve this controversy, a multi-wavelength Raman cross-section experiment was conducted on two different TeO2-based glass samples. The estimated Raman gain response of the material shows good agreement with the directly-measured Raman gain data at 1064 nm, after correction for the dispersion and wavelength-dependence of the Raman gain process.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M.N. Islam, �??Raman Amplifiers for Telecommunications,�?? IEEE J. Sel. Top. Quantum Electron. 8, 548-559 (2002)
    [CrossRef]
  2. M.N. Islam, �??M.N. Islam, �??Raman Amplifiers for Telecommunications 1,�?? Physical Principles (Springer 2004)
  3. H.S. Seo and K. Oh, �??Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration,�?? Opt. Commun. 181, 145-151 (2000)
    [CrossRef]
  4. J. Bromage, K. Rottwitt, and M.E. Lines, �??A Method to Predict the Raman Gain Spectra of Germanosilicate Fibers With Arbitrary Index Profiles,�?? Photon. Technol. Lett. 14, 24-26 (2002)
    [CrossRef]
  5. M. E. Lines, �??Raman gain estimates for high-gain optical fibers,�?? J. Appl. Phys. 62, 4363-4370 (1987)
    [CrossRef]
  6. M.E. Lines, �??Absolute Raman Intensities in Glasses, I. Theory�??, J. Non-Cryst. Sols. 89, 143-162 (1987)
    [CrossRef]
  7. A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, �??The intensity of Raman scattering in glasses containing heavy metal oxides,�?? J. Non-Cryst. Sols. 99, 289-307 (1988)
    [CrossRef]
  8. F.L Galeener, J. C. Mikkelsen Jr., R. H. Geils, and W. J. Mosby, �??The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,�?? Appl. Phys. Lett. 32, 34-36 (1978)
    [CrossRef]
  9. R. H. Stolen, �??Issues in Raman gain measurements,�?? in Tech. Dig. Symp. Optical Fiber Measurements, NIST Special Publication 953 (National Institute of Standards and Technology), (Gaithersburg, MD, 2000) pp. 139
  10. A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, �??Ultra-wideband tellurite-based Raman fibre amplifier,�?? Electron. Lett. 37, 1442-1443 (2001)
    [CrossRef]
  11. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, �??Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,�?? Opt. Lett. 28, 1126-1128 (2003)
    [CrossRef] [PubMed]
  12. C. Rivero, K. Richardson, R. Stegeman, G. Stegeman, T. Cardinal, E. Fargin, M. Couzi, and V. Rodriguez, �??Quantifying Raman Gain Coefficients in Tellurite Glasses,�?? J. Non-Cryst. Sols. 345&346, 396-401 (2004)
    [CrossRef]
  13. R. Stegeman, C. Rivero, K. Richardson, G. Stegeman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, and J-C. Champarnaud-Mesjard, �??Raman gain measurements of thallium-tellurium oxide glasses,�?? Opt. Express 13, 1144-1149 (2005)
    [CrossRef] [PubMed]
  14. G. Dai, F. Tassone, A. Li Bassi, V. Russo, C.E. Bottani, and F. D�??Amore, �??TeO2-based glasses containing Nb2O5, TiO2, and WO3 for discrete Raman fiber amplification,�?? Photon. Technol. Lett. 16, 1011-1013, (2004)
    [CrossRef]
  15. G.S. Murugan, T. Suzuki, and Y. Ohishi, �??Tellurite glasses for ultrabroadband fiber Raman amplifiers,�?? Appl. Phys. Lett. 86, 161109 (2005)
    [CrossRef]
  16. V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, �??Raman band intensities of tellurite glasses,�?? Opt. Lett. 30, 1156-1158 (2005)
    [CrossRef] [PubMed]
  17. N.L. Boling, A.J. Glass, and A. Owyoung, �??Empirical Relationships for Predicting Nonlinear Refractive Index Changes in Optical Solids,�?? IEEE J. Quantum Electron. 14, 601-608 (1978)
    [CrossRef]
  18. F. Yoshino, S. Polyakov, G.I. Stegeman, and M. Liu, �??Nonlinear Refraction and Absorption from 1300 to 2200 nm in Single Crystal Polymer poly [bis (p-toluene sulfonate)] of 2, 4-hexadiyne-1, 6-diol (PTS),�?? Quantum Electronics and Laser Science QELS Postconference Digest, QTuG43 (2003)
  19. V.A. Lisinetskii, I.I. Mishkel, R.V. Chulkov, A.S. Grabtchikov, P.A. Apanasevich, H.J. Eichler, and V.A. Orlovich, �??Raman gain coefficient of Barium Nitrate measured for the spectral region of Ti:Sapphire Laser,�?? J. of Nonlinear Opt. Phys. Mat. 14, 107-114 (2005)
    [CrossRef]
  20. Y. Kato and H. Takuma, �??Experimental Study on the Wavelength Dependence of the Raman Scattering Cross Sections,�?? J. Chemical Phys. 54, 5398-5402 (1971)
    [CrossRef]
  21. Y. Kato and H. Takuma, �??Absolute Measurement of Raman-Scattering Cross Sections in Liquids,�?? J. Opt. Soc. Am. 61, 347-350 (1971)
    [CrossRef]
  22. B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Mejean, B. Frit, V. Nazabal, E. Fargin, G. Le Flem, M. O. Martin, B. Bosquet, L. Canioni, S. Le Boiteux, P. Segonds, and L. Sarger, �??Glass structure and optical nonlinearities in thallium(I) tellurium (IV) oxide glasses,�?? J. Sol. St. Chem. 146, 329 (1999)
    [CrossRef]
  23. A. Berthereau, E. Fargin, A. Villezusanne, R. Olazcuaga, G. Le Flem, L.Ducasse, �??Determination of local geometries around tellurium in TeO2-Nb2O5 and TeO2-Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,�?? J. Sol. St. Chem. 126, 143-151 (1996)
    [CrossRef]
  24. M.E. Lines, �??Influence of d orbitals on the nonlinear optical response of transparent transition-metal oxides,�?? Phys. Rev. B 43, 11978-11990 (1991)
    [CrossRef]
  25. T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, �??Raman spectra of MO1/2-TeO2 (M=Li, Na, K, Rb, Cs, and Tl) glasses,�?? J. Non-Cryst. Sols. 144, 128 (1992)
    [CrossRef]
  26. R. H. Stolen and E. P. Ippen, �??Raman gain in glass optical waveguides,�?? Appl. Phys. Lett. 22, 276-273 (1972)
    [CrossRef]
  27. R. Stegeman, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, L. Jankovic, and H. Kim, �??Raman gain measurements in bulk glass samples�??, J. Opt. Soc. Am. B (to be published)
  28. F.A. Oguama, H. Garcia, and A.M. Johnson, �??Simultaneous measurement of the Raman gain coefficient and the nonlinear refractive index of optical fibers: theory and experiment,�?? J. Opt. Soc. Am. B 22, 426-436 (2005)
    [CrossRef]
  29. M.E. Lines, �??Oxide glasses for fast photonic switching: A comparative study,�?? J. Appl. Phys. 69, 6876- 6884 (1991)
    [CrossRef]

Appl. Phys. Lett.

F.L Galeener, J. C. Mikkelsen Jr., R. H. Geils, and W. J. Mosby, �??The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,�?? Appl. Phys. Lett. 32, 34-36 (1978)
[CrossRef]

G.S. Murugan, T. Suzuki, and Y. Ohishi, �??Tellurite glasses for ultrabroadband fiber Raman amplifiers,�?? Appl. Phys. Lett. 86, 161109 (2005)
[CrossRef]

R. H. Stolen and E. P. Ippen, �??Raman gain in glass optical waveguides,�?? Appl. Phys. Lett. 22, 276-273 (1972)
[CrossRef]

IEEE J. Quantum Electron.

N.L. Boling, A.J. Glass, and A. Owyoung, �??Empirical Relationships for Predicting Nonlinear Refractive Index Changes in Optical Solids,�?? IEEE J. Quantum Electron. 14, 601-608 (1978)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M.N. Islam, �??Raman Amplifiers for Telecommunications,�?? IEEE J. Sel. Top. Quantum Electron. 8, 548-559 (2002)
[CrossRef]

J. Appl. Phys.

M. E. Lines, �??Raman gain estimates for high-gain optical fibers,�?? J. Appl. Phys. 62, 4363-4370 (1987)
[CrossRef]

M.E. Lines, �??Oxide glasses for fast photonic switching: A comparative study,�?? J. Appl. Phys. 69, 6876- 6884 (1991)
[CrossRef]

J. Chemical Phys.

Y. Kato and H. Takuma, �??Experimental Study on the Wavelength Dependence of the Raman Scattering Cross Sections,�?? J. Chemical Phys. 54, 5398-5402 (1971)
[CrossRef]

J. Non-Cryst. Sols.

C. Rivero, K. Richardson, R. Stegeman, G. Stegeman, T. Cardinal, E. Fargin, M. Couzi, and V. Rodriguez, �??Quantifying Raman Gain Coefficients in Tellurite Glasses,�?? J. Non-Cryst. Sols. 345&346, 396-401 (2004)
[CrossRef]

M.E. Lines, �??Absolute Raman Intensities in Glasses, I. Theory�??, J. Non-Cryst. Sols. 89, 143-162 (1987)
[CrossRef]

A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, �??The intensity of Raman scattering in glasses containing heavy metal oxides,�?? J. Non-Cryst. Sols. 99, 289-307 (1988)
[CrossRef]

T. Sekiya, N. Mochida, A. Ohtsuka, and M. Tonokawa, �??Raman spectra of MO1/2-TeO2 (M=Li, Na, K, Rb, Cs, and Tl) glasses,�?? J. Non-Cryst. Sols. 144, 128 (1992)
[CrossRef]

J. of Nonlinear Opt. Phys. Mat.

V.A. Lisinetskii, I.I. Mishkel, R.V. Chulkov, A.S. Grabtchikov, P.A. Apanasevich, H.J. Eichler, and V.A. Orlovich, �??Raman gain coefficient of Barium Nitrate measured for the spectral region of Ti:Sapphire Laser,�?? J. of Nonlinear Opt. Phys. Mat. 14, 107-114 (2005)
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

F.A. Oguama, H. Garcia, and A.M. Johnson, �??Simultaneous measurement of the Raman gain coefficient and the nonlinear refractive index of optical fibers: theory and experiment,�?? J. Opt. Soc. Am. B 22, 426-436 (2005)
[CrossRef]

R. Stegeman, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, L. Jankovic, and H. Kim, �??Raman gain measurements in bulk glass samples�??, J. Opt. Soc. Am. B (to be published)

J. Sol. St. Chem.

B. Jeansannetas, S. Blanchandin, P. Thomas, P. Marchet, J. C. Champarnaud-Mesjard, T. Merle-Mejean, B. Frit, V. Nazabal, E. Fargin, G. Le Flem, M. O. Martin, B. Bosquet, L. Canioni, S. Le Boiteux, P. Segonds, and L. Sarger, �??Glass structure and optical nonlinearities in thallium(I) tellurium (IV) oxide glasses,�?? J. Sol. St. Chem. 146, 329 (1999)
[CrossRef]

A. Berthereau, E. Fargin, A. Villezusanne, R. Olazcuaga, G. Le Flem, L.Ducasse, �??Determination of local geometries around tellurium in TeO2-Nb2O5 and TeO2-Al2O3 oxide glasses by XANES and EXAFS: investigation of electronic properties of evidenced oxygen clusters by ab initio calculations,�?? J. Sol. St. Chem. 126, 143-151 (1996)
[CrossRef]

Opt. Commun.

H.S. Seo and K. Oh, �??Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration,�?? Opt. Commun. 181, 145-151 (2000)
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Technol. Lett.

J. Bromage, K. Rottwitt, and M.E. Lines, �??A Method to Predict the Raman Gain Spectra of Germanosilicate Fibers With Arbitrary Index Profiles,�?? Photon. Technol. Lett. 14, 24-26 (2002)
[CrossRef]

G. Dai, F. Tassone, A. Li Bassi, V. Russo, C.E. Bottani, and F. D�??Amore, �??TeO2-based glasses containing Nb2O5, TiO2, and WO3 for discrete Raman fiber amplification,�?? Photon. Technol. Lett. 16, 1011-1013, (2004)
[CrossRef]

Phys. Rev. B

M.E. Lines, �??Influence of d orbitals on the nonlinear optical response of transparent transition-metal oxides,�?? Phys. Rev. B 43, 11978-11990 (1991)
[CrossRef]

Physical Principles

M.N. Islam, �??M.N. Islam, �??Raman Amplifiers for Telecommunications 1,�?? Physical Principles (Springer 2004)

QELS Postconference Digest 2003

F. Yoshino, S. Polyakov, G.I. Stegeman, and M. Liu, �??Nonlinear Refraction and Absorption from 1300 to 2200 nm in Single Crystal Polymer poly [bis (p-toluene sulfonate)] of 2, 4-hexadiyne-1, 6-diol (PTS),�?? Quantum Electronics and Laser Science QELS Postconference Digest, QTuG43 (2003)

Symp. Opt. Fiber Measurements NIST 2000

R. H. Stolen, �??Issues in Raman gain measurements,�?? in Tech. Dig. Symp. Optical Fiber Measurements, NIST Special Publication 953 (National Institute of Standards and Technology), (Gaithersburg, MD, 2000) pp. 139

Ultra-wideband tellurite-based Raman fib

A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, �??Ultra-wideband tellurite-based Raman fibre amplifier,�?? Electron. Lett. 37, 1442-1443 (2001)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

UV-Vis-NIR absorption spectra of samples W, Nb, and SiO2. Notice that 195 nm is the lowest wavelength resolution of the Cary500 Spectrophotometer.

Fig. 2.
Fig. 2.

VV Polarized Experimental Spontaneous Raman Spectrum of samples W and Nb, normalized to SiO2

Fig. 3.
Fig. 3.

VV Polarized Spontaneous Raman Spectrum of samples W and Nb, normalized to SiO2. Excitation wavelength 514 nm

Fig. 4.
Fig. 4.

Estimated multi-wavelength Raman gain coefficient at the peak Raman vibration (TeO4 units at 665 cm-1 (Δυ=20 THz)), and W-O vibration (at 920 cm-1 (Δυ=27.6 THz)) respectively, normalized to SiO2. The dash line is used as a guide to the eye. The solid lines represent the (n 2(λ)-1)2 approximation to the dispersion.

Fig. 5.
Fig. 5.

Spontaneous Raman spectra of 85% TeO2 - 15% WO3 obtained at different wavelengths, normalized to the peak Raman gain value at 665 cm-1 (Δυ=20 THz), measured with 1064 nm pumping.

Tables (2)

Tables Icon

Table 1. Physical Properties

Tables Icon

Table 2. Calculated and Experimentally measured Raman Gain coefficient with 1064 nm pumping, at the peak Raman resonance at 665 cm-1 (Δυ=20 THz)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α ij k = r α ij k , r ( ω 1 ω k , r ) + r β { α ij k , r ( ω 1 ω k , r ) Q β k Q β k = 0 } Q β k
n 2 = 1 + 1 ε 0 k N k eal { r α ij k , r ( ω 1 ω k , r ) } ,
I β k , r ( ω 1 Ω β k ) I inc ( ω 1 ) Δ Ω = K SR k , r ( ω 1 Ω β k ) 4 [ 1 R ( ω 1 ) ] [ 1 R ( ω 1 Ω β k ) ] [ n ( ω 1 Ω β k ) ] 2 α ij k , r ( ω 1 ω k , r ) Q β k 2
γ β k , r ( ω 1 Ω β k ) = K RG k ( ω 1 Ω β r ) n ( ω 1 Ω β r ) n ( ω 1 ) α ij k , r ( ω 1 ω k , r ) Q β k 2 ,
γ β k , r ( ω 1 Ω β r ) = K RG k , r K SR k , r n ( ω 1 Ω β r ) ( ω 1 Ω β r ) 2 n ( ω 1 ) [ 1 R ( ω 1 ) ] [ 1 R ( ω 1 Ω β r ) ] I β k , r ( ω 1 Ω β r ) I inc ( ω 1 ) Δ Ω .
γ β r , k ( ω 2 Ω β r ) γ β r , k ( ω 1 Ω β r ) = ( ω 1 Ω β r ) 2 ( ω 2 Ω β r ) 3 n ( ω 2 Ω β r ) n ( ω 1 ) n ( ω 1 Ω β r ) n ( ω 2 ) [ 1 R ( ω 1 Ω β r ) ] [ 1 R ( ω 1 ) ] [ 1 R ( ω 2 Ω β r ) ] [ 1 R ( ω 2 ) ]
× I β k , r ( ω 2 Ω β r ) I inc ( ω 2 ) I inc ( ω 1 ) I β k , r ( ω 1 Ω β r )

Metrics