Abstract

We demonstrate simultaneous repetition rate multiplication of laser pulses at multiple wavelengths using the spectral elimination approach. The phase coherence between the pulses is preserved while the aggregate bandwidth can be significantly enhanced. The repetition rates of pulses from both a mode-locked fiber ring laser and a pair of gain-switched DFB laser diodes have been multiplied to over 18 GHz per wavelength using the same setup. The key element is an all-fiber, polarization independent birefringence loop mirror comb filter. The broad transmission peaks of the filter also allow a large tolerance in the drift of the input wavelengths and repetition rates. A detuning range of 1.2 GHz is observed, corresponding to 13% of the input frequency.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Ciaramella, G. Contestabile, A. D'Errico, C. Loiacono, M. Presi, �??High-power widely tunable 40-GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects, �??IEEE Photon. Technol. Lett. 16,753 - 755 (2004).
    [CrossRef]
  2. K. L. Deng, K. J. Kang, I. Glesk, P. R. Prucnal, and S. Shin, �??Optical packet compressor for ultra-fast packet-switched optical networks,�?? Electron. Lett. 33, 1237 - 1239 (1997).
    [CrossRef]
  3. K. S. Lee and C. Shu , �??Optical Loop Mirror Multiplexer,�?? IEEE Photon. Technol. Lett. 7, 1444 - 1446, (1995).
    [CrossRef]
  4. Ju Han Lee, You Min Chang, Young-Geun Han, Sang Hyuck Kim, and Sang Bae Lee, �??2 ~ 5 times tunable repetition rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating,�?? Opt. Express 12, 3900 - 3905 (2004).
    [CrossRef]
  5. N. K. Berger, B. Levit, S. Atkins, B. Fischer, �??Repetition rate multiplication of optical pulses using uniform fiber Bragg gratings,�?? Opt. Commun. 221, 331 - 335 (2003).
    [CrossRef]
  6. R. Slavík and S. LaRochelle, �??Design of 10-to-40 GHz and higher pulse-rate multiplication by means of coupled Fabry�??Perot resonators,�?? Opt. Commun. 247, 307-312 (2005).
    [CrossRef]
  7. Sizer, T., II, �??Increase in laser repetition rate by spectral selection,�?? IEEE J. Quantum Electron. 25, 97 �?? 103 (1989).
    [CrossRef]
  8. M. Currie, F. K. Fatemi, and J. W. Lou, �??Increasing laser repetition rate by spectral elimination,�??Proceedings, CLEO 2003, CThPDA8, Baltimore, USA (2003).
  9. K. Yiannopoulos, K. Vyrsokinos, D. Tsiokos, E. Kehayas, N. Pleros, G. Theophilopoulos, T. Houbavlis, G. Guekos, and H. Avramopoulos, �??Pulse repetition frequency multiplication with spectral selection in Fabry-Perot filters,�?? IEEE J. Quantum Electron. 40, 157 - 165 (2004).
    [CrossRef]
  10. D. H. Kim and J. U. Kang, �??Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,�?? Opt. Express 12, 4490 �?? 4495 (2004).
    [CrossRef] [PubMed]
  11. X. Fang, H. Ji, C. T. Allen, K. Demarest, and L. Pelz, �??A compound high-order polarization-independent birefringence filter using Sagnac interferometers,�?? IEEE Photon. Technol. Lett. 9, 458 - 460 (1997).
    [CrossRef]
  12. M. Mielke, G. A. Alphonse, and P. J. Delfyett, �??168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,�?? IEEE Photon. Technol. Lett. 15, 501 - 503 (2003).
    [CrossRef]
  13. J. Vasseur, M. Hanna, J. Dudley, and J-P Goedgebuer, �??Alternate multiwavelength modelocked fiber laser,�?? IEEE Photon. Technol. Lett. 16, 1816 - 1818 (2004).
    [CrossRef]
  14. L. R. Chen, �??Tunable multiwavelength fiber ring lasers using a programmable high-birefringence fiber loop mirror,�?? IEEE Photon. Technol. Lett. 16, 410 - 412 (2004).
    [CrossRef]
  15. X. Fang, K. Demarest, H. Ji, C. Allen, and L. Pelz, �??A subnanosecond polarization-independent tunable filter/wavelength router using a Sagnac interferometer,�?? IEEE Photon. Technol. Lett. 9, 1490 - 1492 (1997).
    [CrossRef]
  16. K. L. Lee, M. P. Fok, S. M. Wan, and C. Shu, �??Optically controlled Sagnac loop comb filter�??, Opt. Express 12, 6335 - 6340, (2004).
    [CrossRef] [PubMed]

CLEO 2003 (1)

M. Currie, F. K. Fatemi, and J. W. Lou, �??Increasing laser repetition rate by spectral elimination,�??Proceedings, CLEO 2003, CThPDA8, Baltimore, USA (2003).

Electron. Lett. (1)

K. L. Deng, K. J. Kang, I. Glesk, P. R. Prucnal, and S. Shin, �??Optical packet compressor for ultra-fast packet-switched optical networks,�?? Electron. Lett. 33, 1237 - 1239 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

Sizer, T., II, �??Increase in laser repetition rate by spectral selection,�?? IEEE J. Quantum Electron. 25, 97 �?? 103 (1989).
[CrossRef]

K. Yiannopoulos, K. Vyrsokinos, D. Tsiokos, E. Kehayas, N. Pleros, G. Theophilopoulos, T. Houbavlis, G. Guekos, and H. Avramopoulos, �??Pulse repetition frequency multiplication with spectral selection in Fabry-Perot filters,�?? IEEE J. Quantum Electron. 40, 157 - 165 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

X. Fang, H. Ji, C. T. Allen, K. Demarest, and L. Pelz, �??A compound high-order polarization-independent birefringence filter using Sagnac interferometers,�?? IEEE Photon. Technol. Lett. 9, 458 - 460 (1997).
[CrossRef]

M. Mielke, G. A. Alphonse, and P. J. Delfyett, �??168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser,�?? IEEE Photon. Technol. Lett. 15, 501 - 503 (2003).
[CrossRef]

J. Vasseur, M. Hanna, J. Dudley, and J-P Goedgebuer, �??Alternate multiwavelength modelocked fiber laser,�?? IEEE Photon. Technol. Lett. 16, 1816 - 1818 (2004).
[CrossRef]

L. R. Chen, �??Tunable multiwavelength fiber ring lasers using a programmable high-birefringence fiber loop mirror,�?? IEEE Photon. Technol. Lett. 16, 410 - 412 (2004).
[CrossRef]

X. Fang, K. Demarest, H. Ji, C. Allen, and L. Pelz, �??A subnanosecond polarization-independent tunable filter/wavelength router using a Sagnac interferometer,�?? IEEE Photon. Technol. Lett. 9, 1490 - 1492 (1997).
[CrossRef]

E. Ciaramella, G. Contestabile, A. D'Errico, C. Loiacono, M. Presi, �??High-power widely tunable 40-GHz pulse source for 160-Gb/s OTDM systems based on nonlinear fiber effects, �??IEEE Photon. Technol. Lett. 16,753 - 755 (2004).
[CrossRef]

K. S. Lee and C. Shu , �??Optical Loop Mirror Multiplexer,�?? IEEE Photon. Technol. Lett. 7, 1444 - 1446, (1995).
[CrossRef]

Opt. Commun. (2)

N. K. Berger, B. Levit, S. Atkins, B. Fischer, �??Repetition rate multiplication of optical pulses using uniform fiber Bragg gratings,�?? Opt. Commun. 221, 331 - 335 (2003).
[CrossRef]

R. Slavík and S. LaRochelle, �??Design of 10-to-40 GHz and higher pulse-rate multiplication by means of coupled Fabry�??Perot resonators,�?? Opt. Commun. 247, 307-312 (2005).
[CrossRef]

Opt. Express (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic illustration of repetition rate multiplication by spectral elimination.

Fig. 2.
Fig. 2.

Repetition rate multiplication of multi-wavelength pulses. PMF: polarization maintaining fiber; PC: polarization controller. Yellow stripes correspond to the transmission wavelengths of the LMF.

Fig. 3.
Fig. 3.

9.3 GHz to 18.6 GHz repetition rate multiplication of ML-FRL pulses. (a) 9.3 GHz input pulses; (b) Optical spectrum of the input; (c) 18.6 GHz multiplied pulses; (d) Optical spectrum of the multiplied output.

Fig. 4.
Fig. 4.

9.0 GHz to 18.0 GHz simultaneous repetition rate multiplication of pulses at multiple wavelengths. (a) 9.0 GHz dual-wavelength input pulses; (b) Optical spectrum of the dual-wavelength input; (c) 18.0 GHz multiplied pulses; (d) Optical spectrum of the multiplied output.

Fig. 5.
Fig. 5.

RF spectrum (a) 9.0 GHz dual-wavelength input; (b) 18.0 GHz multiplied output.

Fig. 6.
Fig. 6.

Temporal profiles of components at individual wavelengths in the dual-wavelength repetition rate multiplication experiment. (a) 9 GHz input pulses at 1548.08 nm; (b) 9 GHz input pulses at 1549.10 nm (c) 18.0 GHz multiplied pulses at 1548.08 nm; (d) 18.0 GHz input pulses at 1549.10 nm

Fig. 7.
Fig. 7.

Dependence of the suppression of the filtered component on the input repetition rate.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ p = 1 Δ υ m
Δ λ = λ 2 Δ n L
Δ ν = v Δ n L
T ( λ ) = 0.5 [ 1 cos ( 2 π Δ n L λ ) ]

Metrics