Abstract

It has recently been shown that a red blood cell (RBC) can be used as optically driven motor. The mechanism for rotation is however not fully understood. While the dependence on osmolarity of the buffer led us to conclude that the osmolarity dependent changes in shape of the cell are responsible for the observed rotation, role of ion gradients and folding of RBC to a rod shape has been invoked by Dharmadhikari et al to explain their observations. In this paper we report results of studies undertaken to understand the dynamics of a RBC when it is optically tweezed. The results obtained support our earlier conjecture that osmolarity dependent changes in shape of the cell are responsible for the observed rotation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75, 826 (1995).
    [Crossref] [PubMed]
  2. M. E. J. Friese, T. A. Nieminen, N. R. Hewckenberg, and H. Rubinsztein-Dunlop, “Alignment or spinning of laser-trapped microscopic waveplates,” Nature 394, 348–350 (1998).
    [Crossref]
  3. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
    [Crossref]
  4. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802-1 (2003).
    [Crossref]
  5. L. Paterson, M. P. MacDonald, J. Arit, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science 292, 912–914 (2001).
    [Crossref] [PubMed]
  6. R. Dasgupta, S.K. Mohanty, and P.K. Gupta, “Rotation of transparent, nonbirefringent objects by transfer of the spin angular momentum of light,” Biotechnol. Lett.25, 1625–1628 (2003); see also Opt. & Photon. News14 (12), 16 (2003).
    [Crossref] [PubMed]
  7. R. Dasgupta and P.K. Gupta, “Rotation of transparent, nonbirefringent objects by transfer of the spin angular momentum of light,” Opt. Lett. 30, 394–396 (2005).
    [Crossref] [PubMed]
  8. S. K. Mohanty, A. Uppal, and P.K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett.26, 971–974 (2004); see also Opt. & Photon. News15 (12), 19 (2004).
    [Crossref] [PubMed]
  9. J.A. Dharmadhikari, S. Roy, A.K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12, 1179–1184 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1179.
    [Crossref] [PubMed]
  10. J.A. Dharmadhikari, S. Roy, A.K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85, 6048–6050 (2004).
    [Crossref]
  11. H. Rouse, Elementary Mechanics of Fluids, Ch. VIII, Wiley Eastern Pvt. Ltd, NewDelhi, India (1970).
  12. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B. 14, 3323–3333 (1997).
    [Crossref]
  13. R. C. Gauthier, M. Ashman, and C. P. Grover “Experimental confirmation of optical-trapping properties of cylindrical objects,” Appl. Opt. 38, 4861–4868 (1999).
    [Crossref]
  14. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behavior of erythrocytes in an optical trapping system,” Opt. Express 7, 533–539 (2000). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-13-533.
    [Crossref] [PubMed]
  15. Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light Streak Tracking of Optically Trapped Thin Microdisks,” Phys. Rev. Lett. 89, 108303-1(2002).
    [Crossref]
  16. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-446.
    [Crossref] [PubMed]

2005 (1)

2004 (2)

2003 (2)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802-1 (2003).
[Crossref]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446–451 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-446.
[Crossref] [PubMed]

2002 (1)

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light Streak Tracking of Optically Trapped Thin Microdisks,” Phys. Rev. Lett. 89, 108303-1(2002).
[Crossref]

2001 (2)

L. Paterson, M. P. MacDonald, J. Arit, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Hewckenberg, and H. Rubinsztein-Dunlop, “Alignment or spinning of laser-trapped microscopic waveplates,” Nature 394, 348–350 (1998).
[Crossref]

1997 (1)

R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B. 14, 3323–3333 (1997).
[Crossref]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

Arit, J.

L. Paterson, M. P. MacDonald, J. Arit, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Ashman, M.

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802-1 (2003).
[Crossref]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arit, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Chaikin, P. M.

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light Streak Tracking of Optically Trapped Thin Microdisks,” Phys. Rev. Lett. 89, 108303-1(2002).
[Crossref]

Cheng, Z.

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light Streak Tracking of Optically Trapped Thin Microdisks,” Phys. Rev. Lett. 89, 108303-1(2002).
[Crossref]

Dasgupta, R.

R. Dasgupta and P.K. Gupta, “Rotation of transparent, nonbirefringent objects by transfer of the spin angular momentum of light,” Opt. Lett. 30, 394–396 (2005).
[Crossref] [PubMed]

R. Dasgupta, S.K. Mohanty, and P.K. Gupta, “Rotation of transparent, nonbirefringent objects by transfer of the spin angular momentum of light,” Biotechnol. Lett.25, 1625–1628 (2003); see also Opt. & Photon. News14 (12), 16 (2003).
[Crossref] [PubMed]

Dharmadhikari, A.K.

Dharmadhikari, J.A.

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arit, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Hewckenberg, and H. Rubinsztein-Dunlop, “Alignment or spinning of laser-trapped microscopic waveplates,” Nature 394, 348–350 (1998).
[Crossref]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

Galajda, P.

Gauthier, R. C.

Grover, C. P.

Grover, S. C.

Gupta, P.K.

R. Dasgupta and P.K. Gupta, “Rotation of transparent, nonbirefringent objects by transfer of the spin angular momentum of light,” Opt. Lett. 30, 394–396 (2005).
[Crossref] [PubMed]

R. Dasgupta, S.K. Mohanty, and P.K. Gupta, “Rotation of transparent, nonbirefringent objects by transfer of the spin angular momentum of light,” Biotechnol. Lett.25, 1625–1628 (2003); see also Opt. & Photon. News14 (12), 16 (2003).
[Crossref] [PubMed]

S. K. Mohanty, A. Uppal, and P.K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett.26, 971–974 (2004); see also Opt. & Photon. News15 (12), 19 (2004).
[Crossref] [PubMed]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

Heckenberg, N. R.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802-1 (2003).
[Crossref]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

Hewckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Hewckenberg, and H. Rubinsztein-Dunlop, “Alignment or spinning of laser-trapped microscopic waveplates,” Nature 394, 348–350 (1998).
[Crossref]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arit, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Mason, T. G.

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light Streak Tracking of Optically Trapped Thin Microdisks,” Phys. Rev. Lett. 89, 108303-1(2002).
[Crossref]

Mathur, D.

Mohanty, S. K.

S. K. Mohanty, A. Uppal, and P.K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett.26, 971–974 (2004); see also Opt. & Photon. News15 (12), 19 (2004).
[Crossref] [PubMed]

Mohanty, S.K.

R. Dasgupta, S.K. Mohanty, and P.K. Gupta, “Rotation of transparent, nonbirefringent objects by transfer of the spin angular momentum of light,” Biotechnol. Lett.25, 1625–1628 (2003); see also Opt. & Photon. News14 (12), 16 (2003).
[Crossref] [PubMed]

Nieminen, T. A.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802-1 (2003).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Hewckenberg, and H. Rubinsztein-Dunlop, “Alignment or spinning of laser-trapped microscopic waveplates,” Nature 394, 348–350 (1998).
[Crossref]

Ormos, P.

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arit, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Rouse, H.

H. Rouse, Elementary Mechanics of Fluids, Ch. VIII, Wiley Eastern Pvt. Ltd, NewDelhi, India (1970).

Roy, S.

Rubinsztein-Dunlop, H.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802-1 (2003).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Hewckenberg, and H. Rubinsztein-Dunlop, “Alignment or spinning of laser-trapped microscopic waveplates,” Nature 394, 348–350 (1998).
[Crossref]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

Sharma, S.

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arit, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Skirtach, A. G.

Uppal, A.

S. K. Mohanty, A. Uppal, and P.K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett.26, 971–974 (2004); see also Opt. & Photon. News15 (12), 19 (2004).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J.A. Dharmadhikari, S. Roy, A.K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85, 6048–6050 (2004).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

J. Opt. Soc. Am. B. (1)

R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B. 14, 3323–3333 (1997).
[Crossref]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Hewckenberg, and H. Rubinsztein-Dunlop, “Alignment or spinning of laser-trapped microscopic waveplates,” Nature 394, 348–350 (1998).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68, 033802-1 (2003).
[Crossref]

Phys. Rev. Lett. (2)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75, 826 (1995).
[Crossref] [PubMed]

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light Streak Tracking of Optically Trapped Thin Microdisks,” Phys. Rev. Lett. 89, 108303-1(2002).
[Crossref]

Science (1)

L. Paterson, M. P. MacDonald, J. Arit, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled Rotation of Optically Trapped Microscopic Particles,” Science 292, 912–914 (2001).
[Crossref] [PubMed]

Other (3)

R. Dasgupta, S.K. Mohanty, and P.K. Gupta, “Rotation of transparent, nonbirefringent objects by transfer of the spin angular momentum of light,” Biotechnol. Lett.25, 1625–1628 (2003); see also Opt. & Photon. News14 (12), 16 (2003).
[Crossref] [PubMed]

S. K. Mohanty, A. Uppal, and P.K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett.26, 971–974 (2004); see also Opt. & Photon. News15 (12), 19 (2004).
[Crossref] [PubMed]

H. Rouse, Elementary Mechanics of Fluids, Ch. VIII, Wiley Eastern Pvt. Ltd, NewDelhi, India (1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the cross-section of the disk

Fig. 2.
Fig. 2.

Time-lapse digitized video images of RBC subjected to optical tweezing with trap beam power of 85 mW. The RBC is shown encircled for clarity and the location of the trap beam is shown by arrow. Time interval between consequent frames was 40 ms. In panel (a) the RBC is in horizontal plane. On being subjected to optical tweezing it gradually orients with its plane along the trap laser beam axis (panels b to f). Scale bar: 5µm

Fig. 3.
Fig. 3.

Angle of orientation (with respect to horizontal) as a function of tweezing time. Square symbols are for 85 mW trapping power and circles are for 60 mW laser power at the trapping plane.

Fig. 4.
Fig. 4.

The estimated viscous orientational torque as a function of tweezing time. Square symbols are for 85 mW trapping power and circles are for 60 mW laser power at the trapping plane.

Fig. 5.
Fig. 5.

Time-lapse images of reorientation of an optically trapped RBC back to the horizontal plane by subjecting it to a viscous force. The RBC is shown encircled for clarity and the location of the trap beam is shown by arrow. Time interval between consequent frames was 80 ms. Scale bar: 5µm.

Fig. 6.
Fig. 6.

Dependence of the speed of rotation of RBCs on the osmolarity of the buffer solution. The trap beam power was 85 mW.

Fig. 7.
Fig. 7.

Force diagram when RBC is trapped in isotonic (a) and hypertonic buffer (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d T D = F D × r = ( C D . 2 R d r ρ ω 2 r 2 2 ) . r . . . . . . . . . . .
T D = ( C D R . ρ ω 2 ) [ r 3 dr ] 0 R = C D ρ ω 2 R 2 4 . . . . . . . . . .
where Re = ρ . u . R η ρ . ω . R 2 η . . . . . . . . . . . . . . . . .
Hence , T D = ( ρ ω 2 R 5 4 ) 24 ( ρ . ω . R 2 η ) = 6 ω η R 3 . . . . . . . . . . . . . . . . .

Metrics