Abstract

A 3rd-order cascaded Raman fiber laser has been demonstrated without using fiber Bragg gratings at all in the entire laser system. More than 2 W output power at the 3rd Stokes emission wavelength of 1307 nm, a bandwidth of 4.2 nm and a slope efficiency of ~46% was measured when a 500 m long moderately Ge-doped silica fiber was pumped by a free running broadband Yb3+-doped fiber laser. This method is simple, versatile and cheap when compared with conventional methods employing narrow band pumping and fiber Bragg gratings to resonate the Stokes wavelengths. A slope efficiency of ~72% and an output power of over 4 W was also achieved at the 1st order Stokes wavelength of 1168 nm when a 130 m long Ge-doped silica fiber was used.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Bromage, �??Raman amplification for fiber communications systems,�?? IEEE J. Lightwave Technol. 22, 79-93 (2004).
    [CrossRef]
  2. E. M. Dianov, �??Germania-based fiber Raman lasers: recent results and prospects,�?? European Conference on Optical Communication, We1.3.1, 292-295 (2004).
  3. S. K. Sim, H. C. Lim, L. W. Lee, L. C. Chia, R. F. Wu, I. Cristiani, M. Rini, V. Degiorgio, �??High-power cascaded Raman fiber laser using phosphosilicate fiber,�?? Electron. Lett. 40, 738-739 (2004).
    [CrossRef]
  4. E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, S. A. Vasiliev, O. I. Medvedkov, �??Three-cascaded 1407-nm Raman laser based on phosphorous-doped silica fiber,�?? Opt. Lett. 25, 402-404 (2000).
    [CrossRef]
  5. Z. Xiong, N. Moore, Z. G. Li, G. C. Lim, �??10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers,�?? IEEE J. Lightwave Technol. 21, 2377-2381 (2003).
    [CrossRef]
  6. F. L. Galeener, J. C. Mikkelsen, Jr., R. H. Geils, W. J. Mosby, �??The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,�?? Appl. Phys. Lett. 32, 34-36 (1978).
    [CrossRef]
  7. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, M. Yu. Salgansky, �??Germania-glass-core silicaglass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefreactivity, and Raman amplification,�?? Opt. Lett. 29, 2596-2598 (2004).
    [CrossRef] [PubMed]
  8. Y. Zhao, Y. Li, and S. D. Jackson, �??Grating-free nth order cascaded Raman fiber lasers using highly Ge-doped low loss fiber,�?? Opt. Express 12, 4053-4058 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4053">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4053</a>
    [CrossRef] [PubMed]
  9. R. H. Stolen, C. Lee, R. K. Jain, �??Development of the stimulated Raman spectrum in single-mode silica fibers,�?? J. Opt. Soc. Am. B 1, 652-657 (1984).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  11. Y. Li, S. D. Jackson, S. Fleming, �??Characterization of a Nd3+-doped fiber laser incorporating an etalon formed between the fiber facet and dielectric mirror,�?? Opt. Comm. 240, 385-389 (2004).
    [CrossRef]

Appl. Phys. Lett. (1)

F. L. Galeener, J. C. Mikkelsen, Jr., R. H. Geils, W. J. Mosby, �??The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,�?? Appl. Phys. Lett. 32, 34-36 (1978).
[CrossRef]

Electron. Lett. (1)

S. K. Sim, H. C. Lim, L. W. Lee, L. C. Chia, R. F. Wu, I. Cristiani, M. Rini, V. Degiorgio, �??High-power cascaded Raman fiber laser using phosphosilicate fiber,�?? Electron. Lett. 40, 738-739 (2004).
[CrossRef]

European Conference (1)

E. M. Dianov, �??Germania-based fiber Raman lasers: recent results and prospects,�?? European Conference on Optical Communication, We1.3.1, 292-295 (2004).

IEEE J. Lightwave Technol. (2)

J. Bromage, �??Raman amplification for fiber communications systems,�?? IEEE J. Lightwave Technol. 22, 79-93 (2004).
[CrossRef]

Z. Xiong, N. Moore, Z. G. Li, G. C. Lim, �??10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers,�?? IEEE J. Lightwave Technol. 21, 2377-2381 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Comm. (1)

Y. Li, S. D. Jackson, S. Fleming, �??Characterization of a Nd3+-doped fiber laser incorporating an etalon formed between the fiber facet and dielectric mirror,�?? Opt. Comm. 240, 385-389 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic configuration of cascaded Raman fiber laser. M: dielectric mirror; FER: fiber end reflector; λP: Raman pump wavelength; λS: Raman Stokes wavelengths; L: lenses; C: cavities; OSA: optical spectrum analyzer.

Fig. 2.
Fig. 2.

Measured output power in total and of the individual Stokes emissions versus the launched pump power for 500 m and 130 m long Raman fiber lasers.

Fig. 3.
Fig. 3.

Pump and Raman fiber laser wavelength and bandwith variation versus launched power for: (a) Yb3+-fiber laser; (b).1st Stokes line; (c) 2nd Stokes line; (d) 3rd Stokes line.

Fig. 4.
Fig. 4.

Free-running Raman fiber laser spectral characteristics for: (a) 500 m long fiber length; (b) 130 m long fiber length.

Fig. 5.
Fig. 5.

Cavity C1 influence on output spectra for Yb3+-doped fiber laser

Metrics