Abstract

The generation of cubicon pulses from an Yb fiber chirped pulse amplification system at pulse energies up to 200 µJ is demonstrated. After pulse compression 650 fs pulses with a pulse energy of 100 µJ are obtained, where pulse compression relies on the compensation of third-order dispersion mismatch between the stretcher and compressor via self-phase modulation of the cubicon pulses in the fiber amplifier. Values of self-phase modulation well in excess of π can be tolerated for cubicon pulses, allowing for the nonlinear compensation of very large levels of dispersion mismatch between pulse stretcher and compressor.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. E. Fermann, M. Hofer, F. Haberl and S.P. Craig-Ryan, �??Femtosecond fiber laser,�?? Electron. Lett. 26, 1737-1738 (1990).
    [CrossRef]
  2. A. Galvanauskas, G.C Cho, A. Hariharan, M.E Fermann, and D. Harter, �??Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems,�?? Opt. Lett. 26, 935-937 (2001).
    [CrossRef]
  3. G. Imeshev, I. Hartl, and M. E. Fermann, "An optimized Er gain band all-fiber chirped pulse amplification system," Opt. Express 12, 6508-6514 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6508">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6508.</a>
    [CrossRef] [PubMed]
  4. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, �??All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,�?? Opt. Express 11, 3332-3337 (2003). <a href="wwwpticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332.</a>
    [CrossRef] [PubMed]
  5. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley and J. D. Harvey, �??Self-similar propagation and amplification of parabolic pulses in optical fibers,�?? Phys. Rev. Lett. 84, 6010-6013 (2000).
    [CrossRef] [PubMed]
  6. A. Galvanauskas, �??Ultrashort Pulse Fiber Amplifiers�?? in Ultrafast Lasers, Technology and Applications, M.E. Fermann, et al. ed. (Marcel Dekker, New York, NY 2003).
  7. Z. Liu, L. Shah, I. Hartl, G.C. Cho, and M.E. Fermann, �??The Cubicon Amplifier,�?? Photonics West 2005, post deadline paper.
  8. Z. Liu, L. Shah, I. Hartl, G.C. Cho, and M.E. Fermann, �??High energy chirped pulse amplification system based on cubicons,�?? to be published in Conference on Lasers and Electro-Optics, (Optical Society of America, Washington, D.C., 2005), paper CThG4.
  9. G.P. Agrawal, Nonlinear Fiber Optics 3rd edition (Academic, San Diego, CA 2001).
  10. I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, �??Ultra-compact Dispersion Compensated Femtosecond Fiber Oscillators and Amplifiers,�?? to be published in Conference on Lasers and Electro-Optics, (Optical Society of America, Washington, D.C., 2005), paper CThG1.
  11. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. peschel, V. Guyneot, and A. Tünnermann, �??Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,�?? Opt. Express 11, 2982-2990 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2982">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2982</a>
    [CrossRef] [PubMed]
  12. G. Albrecht, A. Antonetti, and G. Mourou, �??Temporal Shape Analysis of Nd3+:YAG Active Passive Mode-locked Pulses,�?? Opt. Commun. 40, 59-62 (1981).
    [CrossRef]
  13. L. Kuznetsova, S. Zhou, F.W. Wise, F.O. Ilday, T.S. Sosnowski, �??Single-mode fiber source of 0.8-µJ, 150-fs pulses at 1µm,�?? to be published in Conference on Lasers and Electro-Optics, (Optical Society of America, Washington, D.C., 2005), paper CtuCC7.

CLEO 2005

Z. Liu, L. Shah, I. Hartl, G.C. Cho, and M.E. Fermann, �??High energy chirped pulse amplification system based on cubicons,�?? to be published in Conference on Lasers and Electro-Optics, (Optical Society of America, Washington, D.C., 2005), paper CThG4.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, �??Ultra-compact Dispersion Compensated Femtosecond Fiber Oscillators and Amplifiers,�?? to be published in Conference on Lasers and Electro-Optics, (Optical Society of America, Washington, D.C., 2005), paper CThG1.

L. Kuznetsova, S. Zhou, F.W. Wise, F.O. Ilday, T.S. Sosnowski, �??Single-mode fiber source of 0.8-µJ, 150-fs pulses at 1µm,�?? to be published in Conference on Lasers and Electro-Optics, (Optical Society of America, Washington, D.C., 2005), paper CtuCC7.

Electron. Lett.

M. E. Fermann, M. Hofer, F. Haberl and S.P. Craig-Ryan, �??Femtosecond fiber laser,�?? Electron. Lett. 26, 1737-1738 (1990).
[CrossRef]

Opt. Commun.

G. Albrecht, A. Antonetti, and G. Mourou, �??Temporal Shape Analysis of Nd3+:YAG Active Passive Mode-locked Pulses,�?? Opt. Commun. 40, 59-62 (1981).
[CrossRef]

Opt. Express

Opt. Lett.

Photonics West 2005

Z. Liu, L. Shah, I. Hartl, G.C. Cho, and M.E. Fermann, �??The Cubicon Amplifier,�?? Photonics West 2005, post deadline paper.

Phys. Rev. Lett.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley and J. D. Harvey, �??Self-similar propagation and amplification of parabolic pulses in optical fibers,�?? Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Other

A. Galvanauskas, �??Ultrashort Pulse Fiber Amplifiers�?? in Ultrafast Lasers, Technology and Applications, M.E. Fermann, et al. ed. (Marcel Dekker, New York, NY 2003).

G.P. Agrawal, Nonlinear Fiber Optics 3rd edition (Academic, San Diego, CA 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Yb fiber amplifier chain for generation of high energy femtosecond pulses.

Fig. 2.
Fig. 2.

Autocorrelations of compressed cubicon pulses at 10 µJ (left) and 50 µJ (right).

Fig. 3.
Fig. 3.

Cubicon pulse spectra at 10 µJ (left) and 50 µJ (right).

Fig. 4.
Fig. 4.

Cross-correlation between fundamental and frequency-doubled cubicon pulses for 10 µJ (dashed) and 50 µJ (solid) plotted on linear (left) and logarithmic (right) scales

Fig. 5.
Fig. 5.

Theoretical cross-correlation (left) between fundamental and frequency-doubled cubicon pulses for 10 µJ (dashed) and 50 µJ (solid) plotted on a logarithmic scale. Corresponding pulse spectrum for 50 µJ (right).

Fig. 6.
Fig. 6.

Autocorrelations of compressed cubicon pulses at 10 µJ (left) and 100 µJ (right), illustrating pulse cleaning with increasing pulse energy

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z = i γ A 2 A i 2 β 2 2 A t 2 + 1 6 β 3 3 A t 3 + g ( ω , z ) A

Metrics